

SANDSTONE IRON DRILLING RESULTS AND JV OPTION EXPANSION

Aurumin Limited (ASX: AUN) ("Aurumin" or the "Company") is pleased to report results for the recent drilling at the Company's Central Sandstone Project targeting iron ore, completed as part of its exclusive option agreement with Newcam Mineral Pty Ltd (**Newcam**)⁹. The drill programme was part of the Newcam due diligence process undertaken as part of their option to form a joint venture on the Iron Ore rights held on Granted Mining Leases M57/654, M57/128 and M57/129. As a result of this drilling the JV has been expanded and extended.

The Central Sandstone Project is located 520km northeast of Perth and includes three granted Mining Licences, a 500ktpa CIL processing plant (requires refurbishment), a permitted tailings storage facility, bore field and camp facilities.

Highlights

- Assay results from drilling and pulp re-assay programme. Shallow high-grade iron mineralisation returned with highlights including:
 - 10m @ 62.12% Fe from 1m in MSRC645
 - 15m @ 59.24% Fe from 14m in SNRC25-004
 - 9m @ 60.75% Fe from 3m in MSRC546
 - 8m @ 60.42% Fe from 10m in SNRC25-003
 - 8m @ 59.93% Fe from 10m in SNRC25-015
- Expansion and Extension of JV Option Agreement with Newcam. Newcam JV Option footprint expanded to include 10 additional tenements, where desktop and preliminary fieldwork have identified DSO iron mineralisation potential from rock chip samples exceeding 60% Fe in areas where iron potential has previously not been recognised (Results discussed within and presented in Annexure E). Key variation terms include:
 - Expansion of JV Option tenement footprint by 241 km² across 10 additional tenements (granted, pending or under acquisition agreement) comprising E57/1102, E57/1140, E57/1289, E57/1304, E57/1356, E57/1366, E57/1374, E57/1375, E57/1396 and E57/1413
 - Extension of the JV option exercise period until 8 October 2025, or as otherwise mutually agreed, to allow sufficient time to conduct due diligence exploration activities
 - Other key terms as announced in ASX Release dated 10 October 2024 remain unchanged

About Newcam

Newcam is a private mining company with iron ore assets in the Mid-West of Western Australia. Newcam mine and export iron ore from the Mt Gould Iron Ore Project through the Port of Geraldton. Newcam have an existing mine to market logistics and sales capacity in place.

Aurumin's Managing Director, Daniel Raihani, commented:

"These positive results have been generated from our first iron ore exploration drilling programme and demonstrate the potential of the Central Sandstone Project for DSO iron ore. The Company is very pleased to expand and extend the JV opportunity with Newcam. Newcam is an ideal partner with which to rapidly commercialise any economic DSO iron ore identified through the proposed JV. Aurumin is excited to be working with Newcam on this opportunity to unlock additional value from the Central Sandstone Project."

"The potential joint venture with Newcam could be worth up to \$7 million in project funding and will accelerate our activity, and de-risk the project overall."

11 April 2025

Drilling and Pulp Re-Assay Results

Aurumin has received all assay results from its recently completed reconnaissance RC drill programme targeting highgrade Direct Shipping Ore (DSO) iron at its Central Sandstone Project. The programme consisted of fifty-four (54) holes and tested seven (7) priority targets (Figure 1) identified from outcropping enriched iron formation supported by rock chip sampling (>60% Fe⁷).

In addition to the RC drill programme Aurumin completed a targeted resampling programme from available pulps. The pulps were sourced from RC drill programmes previously completed by Middle Island during 2019 and 2022. Pulps for assaying were selected based on original geological logging and review of the available chip trays by Aurumin geologists.

Encouraging results were returned across three of the prospects where shallow (<30m) high-grade iron mineralisation returned with low levels of deleterious elements, as shown in Appendix D. The drilling demonstrates the presence of DSO iron grades at shallow depth and dip over widths up to 15m downhole, as shown in Figure 2 to Figure 5. These results support the potential for exploitation by shallow low strip open pit mining and have encouraged Newcam to expand and extend the JV option agreement.

The potential iron mineralisation has been identified, to date, within granted mining tenements. These tenements have existing proximal haul roads and come with legacy datasets i.e., environmental and heritage, that would assist approval processes in both cost and timing. Leveraging existing mining tenements, historical datasets and the existing camp infrastructure collectively would reduce the burden on a resource base to underpin a potential mining operation.

Expansion and Extension of JV Option Agreement

With positive results from the initial drilling programme, Newman and Aurumin have agreed to extend the option period until 8 October 2025 and expand the JV Option tenement footprint by 241 km² across 10 additional tenements (granted, pending or under acquisition agreement) comprising E57/1102, E57/1140, E57/1289, E57/1304, E57/1356, E57/1366, E57/1374, E57/1375, E57/1396 and E57/ with potential for iron mineralisation.

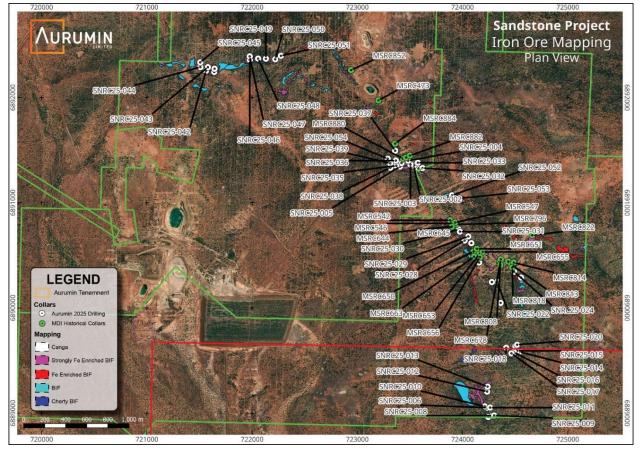


Figure 1. Location of collars of RC holes drilled by Aurumin and collars of resampled historical RC pulps.

Figure 2. Collar plan of C1 prospect with significant iron intervals.

11 April 2025



Figure 3. C1 cross-section 723493 E highlighting shallow dipping iron enriched BIF.

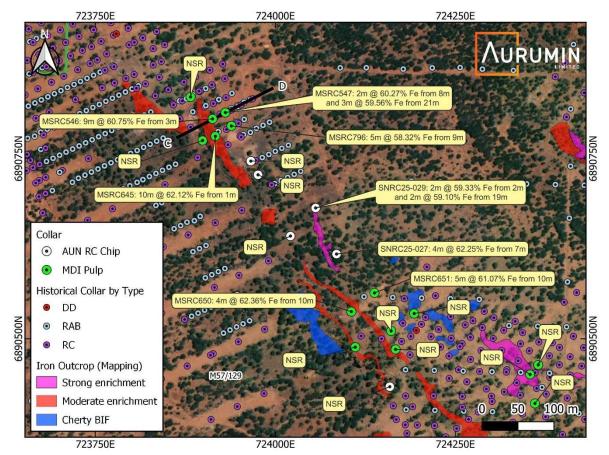


Figure 4. Collar plan of C3-5 prospects with significant iron intervals.

Aurumin

aurumin.com.au

11 April 2025

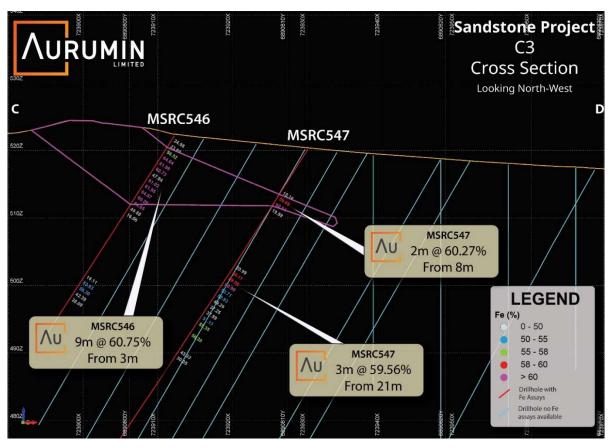


Figure 5. C3 cross-section looking northwest highlighting shallow dipping iron enriched BIF.

Additional Target Areas

Following on from the identification of potential DSO iron mineralisation within the Central Sandstone Gold project and the recent success of the drill programme in crystalising the iron potential, Aurumin conducted a broader review of its tenement package at Sandstone for additional opportunities for potential DSO iron mineralisation. From high level assessment, a further five areas have been identified (Figure 6). The targets are underpinned by the presence of multiple BIF units that have been subject to various levels of deformation. Recently, field reconnaissance visits were conducted across some of the prospects outside of the mining centre. These visits confirmed the presence of outcropping enriched BIF units where rock chip samples returned grades >60% Fe across multiple prospects. Like the iron prospects within the mining centre, these other prospects are favourably located proximal to roads including sealed roads Mount Magnet – Leinster and well maintained unsealed Paynes Find – Sandstone and Menzies -Sandstone roads. It should be noted that some of these tenements are currently in application (see Figure 6).

Initial field visits identified surface iron mineralisation as both hematite enriched BIF (Figure 9 A and B) and detrital / iron pisolite (Figure 9 C and D) that may represent immature paleo channels or capping on BIF. Rock chip sampling of enriched BIF has returned grades >60% Fe while detrital iron is generally low to mid 50s % Fe. All rock chip grades are presented in Appendix E and in Figure 6 to Figure 8.

Aurumin now plans to conduct detailed field work consisting of prospect mapping and rock chip sampling to focus future drill programmes to give Aurumin the best chance to identify DSO iron mineralisation that may support an iron operation.

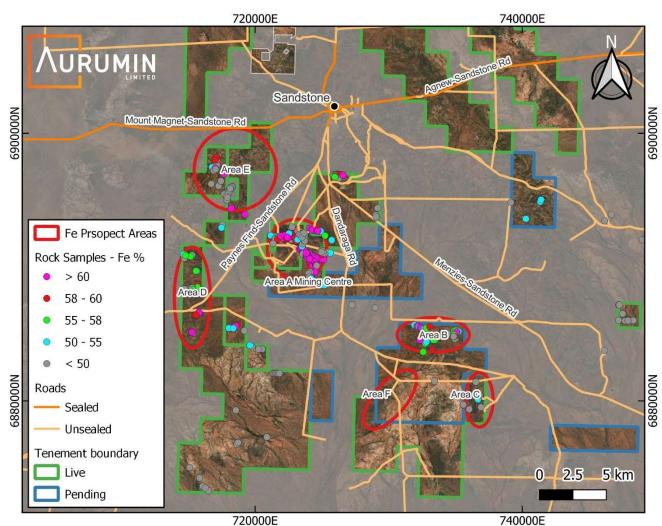


Figure 6. Sandstone project DSO iron prospect areas.

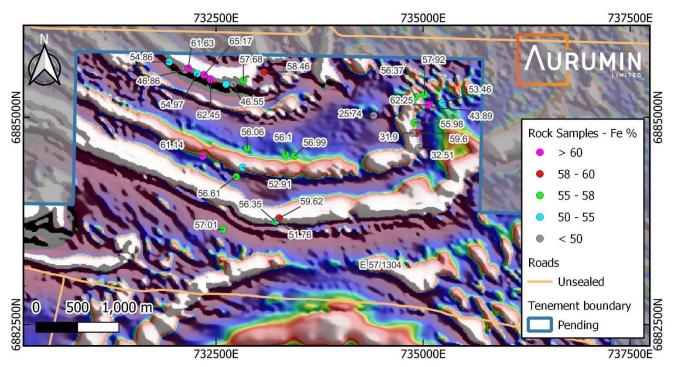


Figure 7. Prospect Area B with rock chips coloured by Fe % underlain by TMIVD NL magnetic image.

11 April 2025

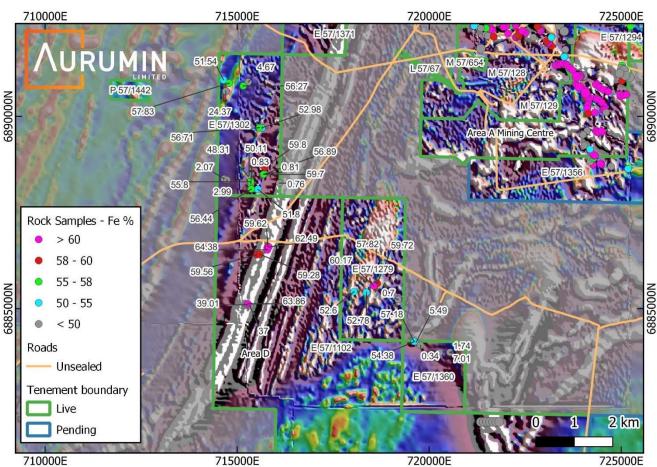


Figure 8. Prospect Area D with rock chips coloured by Fe % underlain by TMIVD NL magnetic image.

Figure 9. (A) Hematite enriched BID (Sample AUN001192 – 65.17% Fe), (B) outcropping hematite enriched BID, (C) hematite enriched capping / pisolite (Sample AUN001217 – 59.62% Fe), (D) outcropping cemented hematite pisolite potentially representing immature paleochannel iron deposits or capping. Results are presented in Annexure E.

Sandstone Iron Ore

Sandstone is located approximately 495km east of Geraldton Port via sealed road (Figure 10). Multiple companies currently export iron ore through Geraldton Port, and iron ore is hauled via sealed highway through Sandstone from operations further east on a regular basis.

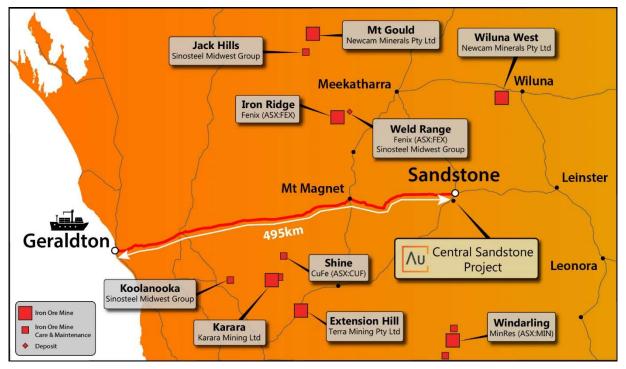


Figure 10. Sandstone Regional Location and Geraldton Port

ABOUT AURUMIN

Projects

Aurumin Limited is an ASX-listed mineral exploration Company focused on the Sandstone region in Western Australia.

The cornerstone of the Sandstone Operations is the Central Sandstone Project acquired by the Company in early 2022².

- The **Central Sandstone Project** comprises an **885,800 ounce gold Mineral Resource**, significant project infrastructure and an expanding tenement footprint where the Company aims to support a gold mining operation in the future.^{2, 3, 10,}
- The Company's Johnson Range Project has a Mineral Resource of 64,700 ounces at a grade of 2.51g/t Au, located midway between Southern Cross and Sandstone.¹
- The **Birrigrin Project** area was added in late 2022 and is 70km north of the Central Sandstone Gold Project. The Project has 39 mapped shafts dating to the early 1900s with **recorded production grades up to 196g/t Au**.
- The **Central Sandstone Project** also has **DSO iron ore potential**, that the company is looking to advance in parallel with the gold Resources. The company has identified a discontinuous 6km strike of banded iron outcrops, with potential widths of 5 to 40m and a peak grade of 67% Fe from rock chips. The company has granted an exclusive option to form a **50/50 JV** to the private company Newcam Minerals Pty Ltd. ^{7, 9}

In addition to the Sandstone Operations, the Company has a significant landholding at its Southern Cross Operations.

- Mt Dimer regionally has a substantial tenure footprint with gold and iron ore potential. The Company is currently working towards completion of the sale of iron ore rights to MinRes for a combination of upfront and milestone cash payments and a \$1/t royalty.⁴
- The Mt Dimer Mining Tenements have been divested to Beacon Minerals Limited (Beacon). Historically the Mt Dimer Mining Tenements produced over 125,000 ounces of gold from open pit and underground production of approximately 600,000 tonnes @ 6.4g/t. Aurumin retains a 2% net smelter return royalty on gold production above 12,000 ounces and on all other minerals, and Beacon have released an initial Reserve of 21,100 oz Au. ^{5, 8}
- The **Mt Palmer Project** historically produced via open pit and underground methods, generating approximately 158,000 ounces of gold at an average grade of 15.9g/t. Aurumin has divested 51% of Mt Palmer to Kula Gold Limited, who can earn up to 80% by spending a\$1M over 3 years. Aurumin can dilute to a 1% royalty on all minerals. ⁶

The Company is actively exploring its tenements and pursuing further acquisitions that complement its existing focus and create additional Shareholder value.

Board

Piers Lewis Non Executive Chairman

Daniel Raihani Managing Director

John Ingram Non Executive Director

Ben Broom Non Executive Director

Capital Structure

494.2 million shares 154.7 million unlisted options **ACN:** 639 427 099

11 April 2025

RELEASE AND CONTACT INFORMATION

Authorisation for release

The Aurumin Board has authorised this announcement for release.

For further information, please contact

Daniel Raihani

Managing DirectorPhone:+61 (8) 6555 2950Email:admin@aurumin.com.auWebsite:www.aurumin.com.au

Post: PO Box 446, Subiaco WA 6904

Subscribe for Announcements

To keep abreast of the Company's latest announcements and developments available to investors please subscribe to our mailing list at https://aurumin.com.au/contact/.

REFERENCES

ASX Announcements

1	25-Aug-21	64,700oz Johnson Range Mineral Resource Estimate
2	16-Dec-21	Aurumin To Acquire 784,000oz Au Sandstone Gold Project
3	31-Oct-22	Re-release - Sandstone Resource Increased to 946koz
4	24-Nov-23	Sale of Mt Dimer Iron Ore Rights
5	28-Dec-23	Sale of Mt Dimer Mining Tenements Completed; Material Reduction in Convertible Note & Placement Completed to Key Stakeholders
6	11-Jul-24	Mt Palmer 51% Divestment to Kula Gold Complete
7	18-Jul-24	High-Grade Iron Ore Discovery at Central Sandstone Project
8	6-Aug-24	ASX:BCN Mt Dimer Maiden Ore Reserve Defined by Pre-Feasibility Study
9	10-Oct-24	Joint Venture, worth up to \$7M, on Sandstone Iron Ore
10	5-Feb-25	33% Increase for Plum Pudding Resource

11 April 2025

COMPETENT PERSON STATEMENTS

The information in this release that relates to exploration results, data quality, geological interpretations and mineral resources for the Johnson Range Project were first released in the Company's announcement dated 25 August 2021. The Company confirms that it is not aware of any new information or data that materially affects the information included in the announcement and confirms that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed except as updated in this announcement.

The information in this release that relates to exploration results, data quality, geological interpretations and mineral resources for the Central Sandstone Project were first released in the Company's announcements dated 16 December 2021, 25 March 2022, 28 April 2022, 2 May 2022, 9 June 2022, 21 June 2022, 11 July 2022, 11 August 2022, 26 August 2022, 5 September 2022, 12 September 2022, 6 October 2022, 31 October 2022, 25 November 2022, 30 January 2023, 23 May 2023, 17 July 2023, 27 November 2023, 3 January 2024, 3 April 2024, 15 April 2024, 22 April 2024, 28 May 2024, 2 July 2024, 18 July 2024, 25 July 2024, 23 August 2024, 10 October 202, 5 February 2025 and 6 February 2024. The Company confirms that it is not aware of any new information or data that materially affects the information included in the announcements and confirms that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.

The information in this announcement that relates to new exploration and geological interpretations for the Central Sandstone Project is based on information compiled by Shane Tomlinson, a Competent Person who is a Member of the Australian Institute of Geoscientists (AIG) and a full-time employee of Aurumin Limited. Mr Tomlinson has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Tomlinson consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

FORWARD LOOKING STATEMENTS

This announcement may contain "forward-looking statements" and "forward-looking information", including statements and forecasts. Often, but not always, forward-looking information can be identified by the use of words such as "plans", "expects", "is expected", "is expecting", "budget", 'outlook", "scheduled", "estimates", "forecasts", "intends", "anticipates", or "believes", or variations (including negative variations) of such words and phrases, or state that certain actions, events or results "may", "could", "would", "might", or "will" be taken, occur or be achieved. Such information is based on assumptions and judgments of Aurumin's directors and management regarding future events and results.

The purpose of forward-looking information is to provide the audience with information about Aurumin's expectations and plans. Readers are cautioned that forward-looking information involves known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements of Aurumin and/or its subsidiaries to be materially different from any future results, performance or achievements expressed or implied by the forward-looking information. Forward-looking information and statements are based on the reasonable assumptions, estimates, analysis and opinions of Aurumin directors and management made in light of their experience and their perception of trends, current conditions and expected developments, as well as other factors that Aurumin directors and management believe to be relevant and reasonable in the circumstances at the date such statements are made, but which may prove to be incorrect. Aurumin believes that the assumptions and expectations reflected in such forward-looking statements and information are reasonable.

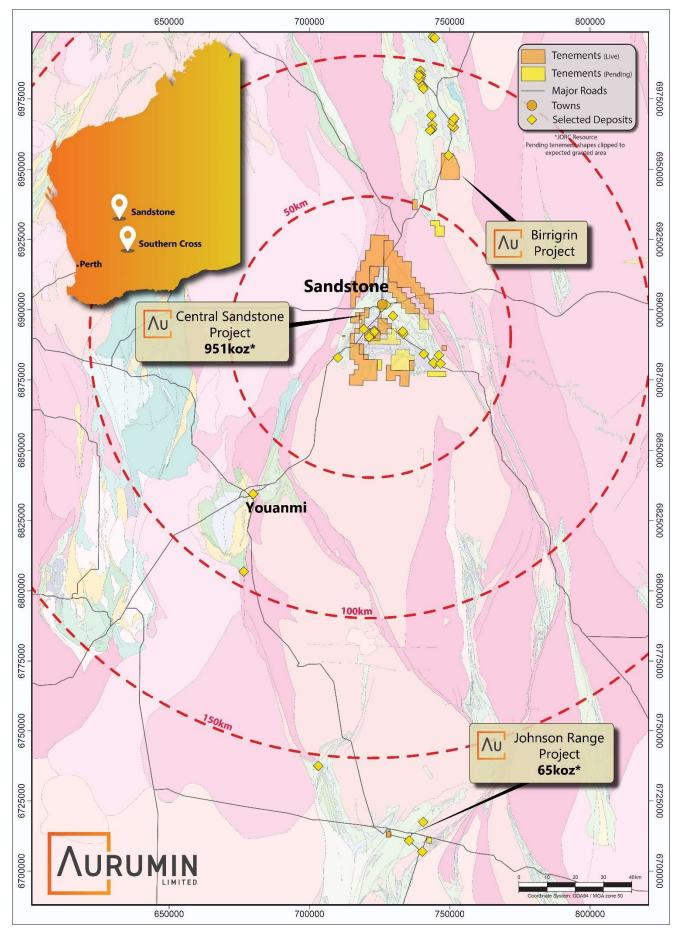
Readers are cautioned that the foregoing list is not exhaustive of all factors and assumptions which may have been used. Aurumin does not undertake to update any forward-looking information or statements, except in accordance with applicable securities law.

11 April 2025

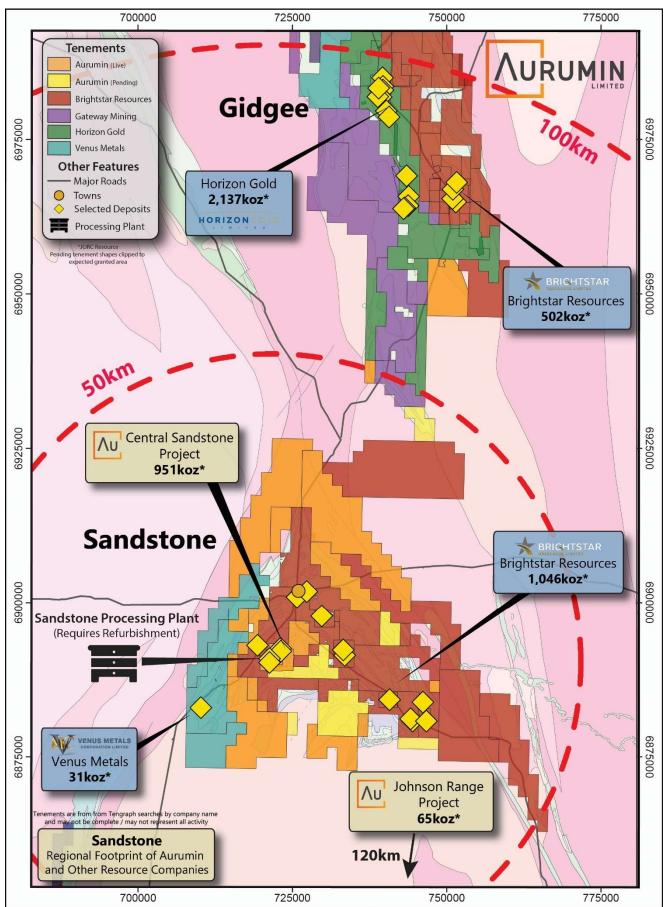
Annexure A – Mineral Resource Table^{1, 2, 3, 10}

			Sand	stone Opera	ations Reso	urces				
	Reported		Indicated			Inferred			Total	
Deposit	to Depth Below	Tonnes	Grade	Au	Tonnes	Grade	Au	Tonnes	Grade	Au
	Surface	(kt)	(g/t Au)	(oz)	(kt)	(g/t Au)	(oz)	(kt)	(g/t Au)	(oz)
Central	Sandstone Op	en Pit Depo	sits – Sumr	nary Minera	l Resource	Estimates (2	2012 JORC C	ode) at 0.5	g/t cut-off*	
Two Mile Hill	150m	1738	1.3	71,700	378	1.5	18,200	2116	1.3	89,900
Shillington	140m	1300	1.5	60,800	613	1.5	29,800	1913	1.5	90,600
Wirraminna	120m	300	1.3	12,100	280	1.1	9,700	580	1.2	21,800
Old Town Well	90m	282	1	8,800	68	0.6	1,400	351	0.9	10,100
Plum Pudding	80m	325	1.5	15,200	88	1.2	3,500	413	1.4	18,700
Eureka	85m	340	0.9	9,700	221	0.9	6,500	561	0.9	16,200
Twin Shafts	95m	149	1	4,700	37	0.7	900	186	0.9	5,600
Goat Farm	120m				398	1	13,200	398	1	13,200
McIntyre	60m	496	1.2	19,400	67	0.9	1,900	562	1.2	21,300
Ridge	75m	173	1.2	6,700	67	1.9	4,000	240	1.4	10,700
McClaren	80m	236	1.4	10,600	60	1.7	3,200	296	1.5	13,800
Sandstone Open Pit Subtotal		5,339	1.3	219,700	2,277	1.3	92,300	7616	1.3	311,900
Central Sa	ndstone Under	ground Dep	osits – Sum	mary Mine	ral Resourc	e Estimates	(2012 JORC	Code) at 0.	.73g/t cut-o	ff*
Two Mile Hill Underground – Tonalite	from 150m to 560m				10,676	1.6	554,100	10,676	1.6	554,100
Two Mile Hill Underground – BIF	NA	48	6.8	10,400	105	2.8	9,400	153	2.8	19,800
Sandstone Underground Subtotal		48	6.8	10,400	10,782	1.6	563,500	10,829	1.6	573,900
Johns	on Range Ope	n Pit Depos	its – Summa	ary Mineral	Resource E	stimates (2	012 JORC Co	ode) at 1.0g	/t cut-off	
Gwendolyn	100m				803	2.51	64,700	803	2.51	64,700
Sandstone Operations Total		5,387	1.3	230,100	13,862	1.6	720,500	19,248	1.5	950,500

*Data has been rounded to the nearest 1,000 tonnes, 0.1g/t and 100 ounces. Rounding variations may occur.


[^]Data has been rounded to the nearest 1,000 tonnes, 0.01g/t and 100 ounces. Rounding variations may occur.

11 April 2025


Annexure B – Sandstone Operations Location Map

11 April 2025

Annexure C – Central Sandstone Project Location

11 April 2025

Annexure D – Drillhole Table

57% Fe cut-off with up to 2m internal dilution allowable

Prospect	Hole #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Fe (%)	P (%)	SiO2 (%)
C1	SNRC25-001	723581	6891327	523	-60	96	36	13.0	22.0	9.0	57.97	0.07	4.71
C1	SNRC25-002	723537	6891354	524	-60	210	24				NSA		
C1	SNRC25-003	723505	6891363	524	-60	182	42	10.0	18.0	8.0	60.42	0.08	4.94
C1	SNRC25-004	723483	6891400	521	-60	175	36	14.0	29.0	15.0	59.24	0.09	6.15
C1	SNRC25-005	723405	6891344	523	-60	178	24				NSA		
S2	SNRC25-006	724238	6889051	541	-60	266	60				NSA		
S2	SNRC25-007	724245	6888964	535	-60	254	36				NSA		
S2	SNRC25-008	724285	6888976	540	-60	254	42				NSA		
S2	SNRC25-009	724301	6888978	555	-60	99	24				NSA		
S2	SNRC25-010	724212	6889064	525	-60	191	30				NSA		
S2	SNRC25-011	724262	6889053	532	-45	47	34				NSA		
S2	SNRC25-012	724234	6889205	528	-60	258	36				NSA		
S2	SNRC25-013	724238	6889252	504	-60	308	30				NSA		
S1	SNRC25-014	724540	6889583	529	-60	68	30				NSA		
S1	SNRC25-015	724517	6889592	529	-60	253	36	10.0	18.0	8.0	59.93	0.01	7.91
S1	SNRC25-016	724488	6889580	528	-60	246	30	11.0	16.0	5.0	60.03	0.01	7.31
S1	SNRC25-017	724465	6889568	529	-60	244	42				NSA		
S1	SNRC25-018	724415	6889622	526	-60	244	24				NSA		
S1	SNRC25-019	724502	6889637	523	-60	187	42				NSA		
S1	SNRC25-020	724519	6889651	522	-60	113	30				NSA		
C9	SNRC25-021	724362	6890048	510	-90	0	18				NSA		
C9	SNRC25-022	724329	6890247	514	-90	0	24				NSA		
C9	SNRC25-023	724279	6890246	515	-90	0	12				NSA		
C6	SNRC25-024	724491	6890344	527	-60	233	42				NSA		
C6	SNRC25-025	724557	6890289	526	-60	223	42				NSA		
C5	SNRC25-026	724158	6890432	527	-60	222	30				NSA		
C5	SNRC25-027	724084	6890616	526	-60	238	30	7.0	11.0	4.0	62.25	0.01	4.16
C5	SNRC25-028	724020	6890641	515	-60	241	30				NSA		
C5	SNRC25-029	724055	6890680	519	-60	245	30	2.0	4.0	2.0	59.33	0.05	4.84
C5	SNRC25-029						and	19.0	21.0	2.0	59.10	0.02	7.44
C3	SNRC25-030	723965	6890745	521	-60	239	30				NSA		
C3	SNRC25-031	723975	6890726	520	-60	248	48				NSA		
C1	SNRC25-032	723620	6891330	519	-60	239	30				NSA		
C1	SNRC25-033	723575	6891381	519	-60	235	42	15.0	20.0	5.0	60.41	0.06	4.24
C1	SNRC25-034	723420	6891378	522	-60	183	54				NSA		
C1	SNRC25-035	723371	6891352	520	-60	165	42	1.0	3.0	2.0	58.89	0.06	9.27
C1	SNRC25-036	723366	6891401	519	-60	177	42				NSA		
C1	SNRC25-037	723360	6891495	514	-60	187	66				NSA		
C1	SNRC25-038	723313	6891333	517	-60	186	30				NSA		
C1	SNRC25-039	723313	6891375	517	-60	184	30	12.0	16.0	4.0	59.07	0.07	9.21

Prospect	Hole #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Fe (%)	P (%)	SiO2 (%)
N2	SNRC25-040	721640	6892243	534	-60	186	24	12.0	15.0	3.0	57.43	0.09	6.59
N2	SNRC25-041	721643	6892274	531	-60	184	48	8.0	11.0	3.0	58.45	0.01	5.66
N2	SNRC25-042	721562	6892254	533	-60	176	24				NSA		
N2	SNRC25-043	721579	6892288	530	-60	187	30				NSA		
N2	SNRC25-044	721508	6892289	530	-60	191	18	12.0	14.0	2.0	58.88	0.01	8.37
N2	SNRC25-045	721507	6892334	527	-60	188	24				NSA		
N3	SNRC25-046	721978	6892358	536	-60	173	30				NSA		
N3	SNRC25-047	721977	6892391	532	-60	172	30				NSA		
N3	SNRC25-048	722057	6892370	536	-60	181	30				NSA		
N3	SNRC25-049	722131	6892369	535	-60	187	30				NSA		
N3	SNRC25-050	722220	6892363	533	-60	181	36				NSA		
N3	SNRC25-051	722274	6892397	531	-60	182	18				NSA		
C2	SNRC25-052	723900	6891071	520	-60	171	42				NSA		
C2	SNRC25-053	723972	6891042	522	-60	204	36				NSA		
C1	SNRC25-054	723289	6891419	514	-60	172	24				NSA		
N7	MSRC473	723201	6891973	509	-60	234	44				NSA		
C3	MSRC542	723881	6890834	519	-59	239	30				NSA		
C3	MSRC546	723912	6890804	522	-57	241	36	3.0	12.0	9.0	60.75	0.01	2.98
C3	MSRC547	723930	6890812	520	-58	246	60	8.0	10.0	2.0	60.27	0.02	4.03
C3	MSRC547						and	21.0	24.0	3.0	59.56	0.03	5.43
C3	MSRC644	723898	6890774	523	-90	0	66				NSA		
C3	MSRC645	723916	6890780	525	-90	0	36	1.0	11.0	10.0	62.12	0.02	2.15
C5	MSRC650	724105	6890536	533	-60	230	78	10.0	14.0	4.0	62.36	0.04	4.16
C5	MSRC651	724137	6890562	532	-60	230	78	10.0	15.0	5.0	61.07	0.01	4.35
C5	MSRC653	724160	6890509	534	-60	230	96				NSA		
C5	MSRC655	724192	6890534	534	-60	230	72				NSA		
C5	MSRC656	724166	6890484	533	-60	230	108				NSA		
C5	MSRC663	724110	6890487	530	-60	230	84				NSA		
C6	MSRC677	724353	6890449	528	-60	230	72				NSA		
C6	MSRC678	724364	6890462	527	-60	230	72				NSA		
C3	MSRC796	723938	6890794	521	-60	241	60	9.0	14.0	5.0	58.32	0.02	6.49
C6	MSRC808	724359	6890409	525	-58	231	66				NSA		
C6	MSRC812	724433	6890442	524	-60	230	84				NSA		
C6	MSRC813	724463	6890412	525	-58	227	72				NSA		
C6	MSRC814	724487	6890431	523	-59	229	84				NSA		
C6	MSRC818	724472	6890383	526	-59	231	84				NSA		
C4	MSRC822	724663	6890692	514	-60	228	66	15.0	18.0	3.0	59.28	0.03	6.63
N6	MSRC852	722941	6892261	515	-60	234	36	5.0	8.0	3.0	58.68	0.02	1.82
C1	MSRC880	723435	6891418	520	-57	247	66	12.0	20.0	8.0	57.26	0.08	9.77
C1	MSRC881	723463	6891430	519	-60	248	66	28.0	32.0	4.0	59.05	0.10	6.31
C1	MSRC882	723499	6891449	517	-60	244	66	12.0	16.0	4.0	58.97	0.09	3.00
C1	MSRC884	723359	6891562	510	-60	245	90				NSA		
			3331302	510		245	50						

Hole #	Interval From (m)	Interval To (m)	Interval (m)	Al2O3 (%)	LOI (%)	S (%)	CaO (%)	Cr2O3 (%)	К2О (%)	MgO (%)	Na2O (%)	TiO2 (%)	Туре	Notes
SNRC25-001	13.0	22.0	9.0	5.12	6.60	0.39	0.01	0.01	0.17	0.02	0.05	0.08	RC Chips	
SNRC25-002													RC Chips	
SNRC25-003	10.0	18.0	8.0	3.32	4.84	0.07	-0.01	0.01	0.01	0.03	0.00	0.08	RC Chips	
SNRC25-004	14.0	29.0	15.0	3.99	4.74	0.02	0.00	0.01	0.01	0.03	0.00	0.07	RC Chips	
SNRC25-005													RC Chips	
SNRC25-006													RC Chips	
SNRC25-007													RC Chips	
SNRC25-008													RC Chips	
SNRC25-009													RC Chips	
SNRC25-010													RC Chips	
SNRC25-011													RC Chips	
SNRC25-012													RC Chips	
SNRC25-013													RC Chips	
SNRC25-014													RC Chips	
SNRC25-015	10.0	18.0	8.0	3.77	2.57	0.01	0.02	0.01	0.01	0.03	0.01	0.09	RC Chips	
SNRC25-016	11.0	16.0	5.0	3.56	2.40	0.01	0.08	0.00	0.02	0.11	0.02	0.06	RC Chips	
SNRC25-017													RC Chips	
SNRC25-018													RC Chips	
SNRC25-019													RC Chips	
SNRC25-020													RC Chips	
SNRC25-021													RC Chips	
SNRC25-022													RC Chips	
SNRC25-023													RC Chips	
SNRC25-024													RC Chips	
SNRC25-025													RC Chips	
SNRC25-026													RC Chips	
SNRC25-027	7.0	11.0	4.0	2.91	3.92	0.17	0.01	0.01	0.07	0.02	0.04	0.06	RC Chips	
SNRC25-028													RC Chips	
SNRC25-029	2.0	4.0	2.0	3.74	6.44	0.26	0.13	0.05	0.08	0.07	0.10	0.10	RC Chips	
SNRC25-030	19.0	21.0	2.0	4.01	4.03	0.11	0.01	0.01	0.04	0.05	0.10	0.07	RC Chips	
SNRC25-030													RC Chips	
SNRC25-031													RC Chips	
SNRC25-032													RC Chips	
SNRC25-033	15.0	20.0	5.0	3.10	5.17	0.11	0.06	0.01	0.01	0.04	0.03	0.06	RC Chips	
SNRC25-034													RC Chips	
SNRC25-035	1.0	3.0	2.0	3.02	3.75	0.04	0.02	0.02	0.02	0.07	0.01	0.09	RC Chips	
SNRC25-036													RC Chips	
SNRC25-037													RC Chips	
SNRC25-038													RC Chips	
SNRC25-039	12.0	16.0	4.0	2.52	3.75	0.02	-0.01	0.01	0.00	0.03	0.02	0.03	RC Chips	
SNRC25-040	12.0	15.0	3.0	5.03	6.08	0.08	0.02	0.00	0.02	0.02	0.04	0.16	RC Chips	

Hole #	Interval From (m)	Interval To (m)	Interval (m)	Al2O3 (%)	LOI (%)	S (%)	CaO (%)	Cr2O3 (%)	К2О (%)	MgO (%)	Na2O (%)	TiO2 (%)	Туре	Notes
SNRC25-041	8.0	11.0	3.0	5.24	4.46	0.65	0.31	0.00	0.30	0.04	0.08	0.08	RC Chips	
SNRC25-042													RC Chips	
SNRC25-043													RC Chips	
SNRC25-044	12.0	14.0	2.0	3.49	3.29	0.03	-0.01	0.01	0.00	0.02	0.01	0.05	RC Chips	
SNRC25-045													RC Chips	
SNRC25-046													RC Chips	
SNRC25-047													RC Chips	
SNRC25-048													RC Chips	
SNRC25-049													RC Chips	
SNRC25-050													RC Chips	
SNRC25-051													RC Chips	
SNRC25-052													RC Chips	
SNRC25-053													RC Chips	
SNRC25-054													RC Chips	
MSRC473													Pulp Re-assay	
MSRC542													Pulp Re-assay	
MSRC546	3.0	12.0	9.0	4.95	4.33	0.08	0.04	0.01	0.03	0.05	0.08	0.13	Pulp Re-assay	
MSRC547	8.0	10.0	2.0	3.83	5.53	0.63	0.02	0.01	0.39	0.03	0.10	0.11	Pulp Re-assay	
MSRC547	21.0	24.0	3.0	3.72	4.38	0.29	0.03	0.00	0.17	0.08	0.12	0.07	Pulp Re-assay	
MSRC644													Pulp Re-assay	
MSRC645	1.0	11.0	10.0	4.81	4.56	0.05	0.02	0.01	0.01	0.07	0.05	0.15	Pulp Re-assay	
MSRC650	10.0	14.0	4.0	2.72	4.39	0.03	0.01	0.01	0.01	0.03	0.00	0.10	Pulp Re-assay	
MSRC651	10.0	15.0	5.0	2.80	5.40	0.07	-0.01	0.00	0.06	0.01	0.00	0.06	Pulp Re-assay	
MSRC653													Pulp Re-assay	
MSRC655													Pulp Re-assay	
MSRC656													Pulp Re-assay	
MSRC663													Pulp Re-assay	
MSRC677													Pulp Re-assay	
MSRC678													Pulp Re-assay	
MSRC796	9.0	14.0	5.0	4.60	4.54	0.22	0.04	0.01	0.13	0.03	0.05	0.08	Pulp Re-assay	
MSRC808													Pulp Re-assay	
MSRC812													Pulp Re-assay	
MSRC813													Pulp Re-assay	
MSRC814													Pulp Re-assay	
MSRC818													Pulp Re-assay	
MSRC822	15.0	18.0	3.0	4.67	4.28	0.03	-0.01	0.00	0.00	0.02	0.01	0.06	Pulp Re-assay	
MSRC852	5.0	8.0	3.0	5.81	6.95	0.10	0.07	0.05	0.02	0.08	0.00	1.15	Pulp Re-assay	
MSRC880	12.0	20.0	8.0	4.01	4.45	0.03	0.02	0.01	0.01	0.06	0.01	0.06	Pulp Re-assay	Composite Sample
MSRC881	28.0	32.0	4.0	4.70	4.32	0.05	-0.01	0.01	0.02	0.04	0.01	0.08	Pulp Re-assay	Composite Sample
MSRC882	12.0	16.0	4.0	4.33	6.98	0.85	0.15	0.01	0.57	0.06	0.04	0.15	Pulp Re-assay	Composite Sample
MSRC884													Pulp Re-assay	

11 April 2025

Annexure E – Rock Chips

Tenement	Status	SampleID	Easting	Northing	Fe	Р	SiO2	AI2O3	s	CaO	Cr2O3	К2О	Mg	Na2O	TiO2	LOI
		-	(GDA94)	(GDA94)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
E57/1102 E57/1102	Granted Granted	1120_1201 1120_1202	715798	6886619 6886603	59.62 62.49	0.06	9.39 3.00	0.67 0.90	0.09	0.11	-0.001 0.004	0.01	0.01	0.01 -0.01	-0.01 0.01	3.84 6.25
E57/1102	Granted	1120_1202	715508	6886402	59.56	0.05	4.69	1.84	0.00	0.02	0.003	0.00	0.02	-0.01	0.01	7.48
E57/1102	Granted	1120_1203	715585	6886412	59.28	0.00	7.47	1.64	0.11	0.09	0.005	0.00	0.02	0.01	0.02	5.59
E57/1102	Granted	1120_1205	715330	6885071	37.00	0.13	42.90	0.28	0.02	0.05	-0.001	0.00	0.01	-0.01	0.02	2.83
E57/1102	Granted	1120 1207	715263	6885097	39.01	0.05	41.80	0.13	0.01	0.02	0.001	0.00	0.03	-0.01	0.01	2.36
E57/1102	Granted	1120_1208	715273	6885123	63.86	0.14	2.36	0.52	0.04	0.04	-0.001	0.00	0.05	-0.01	0.01	5.60
E57/1102	Granted	- A1102_01	715784	6886527	64.38	0.15	2.58	1.10	0.05	0.06	0.014	0.01	0.02	-0.01	0.07	4.22
E57/1140	Granted	A1140_01	719328	6893934	55.07	0.02	4.58	3.95	0.13	0.13	0.107	0.01	0.05	0.01	5.23	6.75
E57/1140	Granted	A1140_02	719252	6893923	60.31	0.04	9.63	0.45	0.03	0.02	0.006	0.01	0.07	0.01	0.01	3.68
E57/1140	Granted	A1140_03	718217	6894388	61.78	0.11	3.05	1.46	0.07	0.06	0.001	0.02	0.03	-0.01	0.06	6.73
E57/1254	Granted	A1254_05	717016	6897390	60.58	0.07	3.07	1.21	0.06	0.09	0.002	0.01	0.04	0.01	0.04	9.11
E57/1254	Granted	A1254_06	717045	6897307	46.83	0.31	17.00	4.54	0.06	0.13	-0.001	0.01	0.03	-0.01	0.57	9.44
E57/1254	Granted	A1254_10	717107	6898188	59.39	0.25	2.69	1.34	0.05	0.06	0.002	0.00	0.01	-0.01	0.23	10.43
E57/1254	Granted	A1254_13	717016	6897998	58.80	0.28	3.93	1.58	0.06	0.03	-0.001	0.00	0.01	-0.01	0.03	10.11
E57/1254	Granted	A1254_22	717652	6896930	31.69	0.10	48.30	0.58	0.03	0.05	0.001	0.01	0.02	-0.01	0.02	4.91
E57/1254	Granted	A1254_23	717671	6896959	61.58	0.12	4.18	0.68	0.07	0.15	0.001	0.00	0.06	-0.01	0.01	7.10
E57/1279	Granted	A1279_02	718618	6885656	57.82	0.02	3.08	4.79	0.11	0.13	0.746	0.01	0.05	-0.01	3.04	5.32
E57/1279	Granted	A1279_03	718645	6885651	59.72	0.03	2.97	3.97	0.10	0.02	0.808	0.00	0.02	-0.01	2.80	4.23
E57/1279	Granted	A1279_04	718557	6885590	60.17	0.03	2.31	3.49	0.12	0.11	0.792	0.00	0.01	-0.01	3.60	3.14
E57/1279	Granted	A1279_06	718363	6885420	52.78	0.02	13.65	1.00	0.09	0.04	0.042	0.01	0.16	-0.01	0.02	7.71
E57/1285	Pending	AUN001233	740273	6893603	50.01	0.01	14.35	3.31	0.19	0.47	0.047	0.05	0.70	0.03	0.18	8.65
E57/1285	Pending	AUN001234	739147	6894832	46.38	0.02	18.80	3.68	0.08	0.11	0.057	0.02	0.07	-0.01	0.14	9.29
E57/1285	Pending	AUN001235	741380	6894955	57.03	0.03	6.45	2.42	0.12	0.16	0.007	0.05	0.14	0.02	0.06	7.54
E57/1285	Pending	AUN001236	741353	6894875	51.55	0.07	8.49	4.90	0.15	0.05	0.013	0.01	0.03	-0.01	0.25	11.83
E57/1285	Pending	AUN001237	741402	6895034	54.19	0.01	9.76	1.89	0.18	0.19	0.023	0.01	0.26	0.05	0.05	8.82
E57/1294	Granted	Md76935	726180	6896926	49.96	0.04	15.30	1.06	0.10	0.03	0.004	0.01	0.05	-0.01	0.04	10.45
E57/1294	Granted	Md76936	726184	6896912	58.61	0.02	6.90	1.65	0.17	0.04	0.005	0.01	0.08	0.01	0.09	6.81
E57/1294	Granted	Md76937	726233	6896883	37.84	0.04	37.50	0.69	0.09	0.06	0.003	0.01	0.02	-0.01	0.02	6.91
E57/1294	Granted	Md76938	726349	6896909	41.28	0.12	34.80	0.36	0.03	0.05	-0.001	0.00	0.02	-0.01	0.02	4.64
E57/1294	Granted	Md76939	726386	6896922	60.15	0.07	3.48	0.94	0.05	0.05	0.006	0.00	-0.01	-0.01	-0.01	9.53
E57/1294	Granted	Md76940	726359	6896917	58.72	0.09	6.41	1.14	0.06	0.04	0.010	0.00	0.02	-0.01	-0.01	7.93
E57/1294	Granted	Md76941	726266	6896643	45.92	0.02	3.65	2.83	0.08	0.05	0.023	0.01	0.02	-0.01	23.50	3.37
E57/1294	Granted	Md76942	726576	6896843	61.40	0.06	2.67	0.61	0.04	0.04	-0.001	0.00	-0.01	-0.01	0.01	9.47
E57/1294	Granted	Md76943	726595	6896859	60.79	0.15	2.38	0.87	0.13	0.14	0.003	0.02	0.01	0.01	0.02	9.56
E57/1294	Granted	Md76944	726588	6896853	60.54	0.04	2.16	0.83	0.05	0.05	0.001	0.01	0.01	-0.01	0.04	10.35
E57/1294	Granted	Md76973	724825	6892666	51.54	0.07	14.50	1.48	0.05	0.03	0.033	0.01	0.01	-0.01	0.03	9.93
E57/1294	Granted	Md76974	724916	6892673	50.17	0.44	17.05	0.85	0.04	0.02	0.006	0.00	0.01	-0.01	0.01	9.08
E57/1294	Granted	Md76981	724615	6892693	63.79	0.05	3.84	0.68	0.04	0.03	0.035	0.01	0.01	-0.01	0.01	4.30
E57/1294	Granted	Md76982	724651	6892695	60.71	0.04	9.06	1.07	0.15	0.11	0.064	0.02	0.02	0.01	0.01	2.98

E57/1294 Granted Md76983 72469 689262 61.7 0.04 6.84 1.40 0.06 0.05 0.02 0.01 0.02 4 E57/1294 Granted Md76984 72524 6892242 55.18 0.29 6.98 2.70 0.10 0.04 0.001 0.01 0.01 0.01 0.02 4.01 0.03 3.03 2.89 0.14 0.08 0.01 <t< th=""><th>0.01 0.04 1 0.01 0.04 1 0.01 0.10 1 0.01 15.40 - 0.01 0.03 2 0.02 0.07 2 0.01 0.33 3 0.01 0.32 4 0.01 0.32 4 0.01 0.03 3 0.01 0.03 3 0.01 0.03 3 0.01 0.03 3 0.01 0.04 9 0.01 0.04 9 0.01 0.01 9</th><th>(%) 3.32 10.20 4.91 2.71 5.15 8.76 4.31 3.52 7.11 9.86 9.02</th></t<>	0.01 0.04 1 0.01 0.04 1 0.01 0.10 1 0.01 15.40 - 0.01 0.03 2 0.02 0.07 2 0.01 0.33 3 0.01 0.32 4 0.01 0.32 4 0.01 0.03 3 0.01 0.03 3 0.01 0.03 3 0.01 0.03 3 0.01 0.04 9 0.01 0.04 9 0.01 0.01 9	(%) 3.32 10.20 4.91 2.71 5.15 8.76 4.31 3.52 7.11 9.86 9.02
STATURA Grance MarGees TZST2 Genome Sola So	0.01 15.40 4 0.01 15.40 4 0.01 0.03 2 0.01 0.03 4 0.01 0.03 4 0.01 0.32 4 0.01 0.32 4 0.01 0.03 5 0.01 0.03 5 0.01 0.03 5 0.01 0.03 5 0.01 0.03 5 0.01 0.03 5 0.01 0.03 5 0.01 0.03 5 0.01 0.04 9 0.01 0.01 9	 4.91 2.71 5.15 8.76 4.31 3.52 7.11 9.86
Image: strate	0.01 0.03 2 0.02 0.07 2 0.01 0.03 2 0.01 0.32 2 0.01 0.32 2 0.01 0.03 3 0.01 0.03 3 0.01 0.03 3 0.01 0.03 3 0.01 0.03 3 0.01 0.03 3 0.01 0.03 3 0.01 0.03 3 0.01 0.03 3 0.01 0.03 3 0.01 0.04 9 0.01 0.11 9 0.01 0.01 9	2.71 5.15 8.76 4.31 3.52 7.11 9.86
EST/1294 Grantel MATG907 Z2003 GeB3762 A495 G.1 B.1 D.1 D.1 <thd.1< th=""> <thd.1< th=""> D.1<!--</td--><td>.02 0.07 2 .01 0.03 2 .01 0.32 4 .01 0.32 4 .01 0.01 3 .01 0.03 5 .01 0.03 5 .01 0.03 5 .01 0.03 5 .01 0.03 5 .01 0.03 5 .01 0.04 9 .01 0.11 9</td><td>5.15 8.76 4.31 3.52 7.11 9.86</td></thd.1<></thd.1<>	.02 0.07 2 .01 0.03 2 .01 0.32 4 .01 0.32 4 .01 0.01 3 .01 0.03 5 .01 0.03 5 .01 0.03 5 .01 0.03 5 .01 0.03 5 .01 0.03 5 .01 0.04 9 .01 0.11 9	5.15 8.76 4.31 3.52 7.11 9.86
Image: state s	0.01 0.03 4 0.01 0.32 4 0.01 0.32 4 0.01 0.03 5 0.01 0.03 5 0.01 0.03 5 0.01 0.03 5 0.01 0.04 9 0.01 0.11 9 0.01 0.01 9	8.76 4.31 3.52 7.11 9.86
Image: strain	0.01 0.32 4 0.01 0.01 3 0.01 0.03 3 0.01 0.03 3 0.01 0.04 9 0.01 0.11 9 0.01 0.01 9	4.31 3.52 7.11 9.86
Image: serie	0.01 0.01 3 0.01 0.03 7 0.01 0.04 9 0.01 0.11 9 0.01 0.01 9	3.52 7.11 9.86
Image: serie between series of the series	.01 0.03 7 .01 0.04 9 .01 0.11 9 .01 0.01 9.01	7.11 9.86
Image 	0.01 0.04 9 0.01 0.11 9 0.01 0.01 9	9.86
Image: strep in the	0.01 0.11 9 0.01 0.01 9	
1 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 <	0.01 0.01 9	9.02
Image: state in the		
Image: relation of the relati		9.97
1 < 0 $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ $1 < 0$ <	0.01 0.06 6	6.60
1 <td>0.01 0.06</td> <td>2.94</td>	0.01 0.06	2.94
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.01 0.07	2.75
1 <td>0.01 0.06</td> <td>5.18</td>	0.01 0.06	5.18
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	.01 0.60 0	6.14
EST/1302 Granted A1302_06 715308 6888460 50.11 0.03 3.16 10.45 0.03 0.035 0.01 0.03 0.035 0.01 0.03 0.035 0.01 0.03 0.035 0.01 0.05 0.01 E57/1302 Granted A1302_07 715288 6888438 48.31 0.04 4.04 11.70 0.07 0.31 0.035 0.01<	0.01 0.06	4.93
Image: State	0.01 0.07 1	10.78
E57/1302 Granted A1302_08 715333 6888298 55.80 0.02 4.77 5.08 0.06 0.03 0.094 0.01 0.06 0.01 E57/1302 Granted A1302_10 715333 6888108 51.80 0.02 4.77 5.08 0.06 0.03 0.094 0.01 0.06 0.01 E57/1302 Granted A1302_11 715367 6888108 56.44 0.04 5.73 2.24 0.12 0.14 0.010 0.02 0.08 0.02 E57/1302 Granted A1302_11 715367 6888108 56.44 0.04 5.73 2.24 0.12 0.14 0.001 0.02 0.08 0.02 0.01 0.02 0.08 0.02 0.01 0.02 0.08 0.02 0.03 0.01 0.02 0.08 0.02 0.03 0.01 0.01 0.02 0.08 0.02 0.03 0.01 0.02 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 </td <td>0.01 4.59 9</td> <td>9.68</td>	0.01 4.59 9	9.68
E57/1302 Granted A1302_10 715367 6888108 56.44 0.04 5.73 2.24 0.12 0.14 0.010 0.01 0.00 0.08 0.08 0.08 E57/1302 Granted A1302_11 715367 6888108 56.44 0.04 5.73 2.24 0.12 0.14 0.001 0.02 0.08 0.08 0.08 E57/1302 Granted A1302_14 715641 6889698 52.98 0.32 5.36 4.19 0.14 0.98 0.019 0.03 0.78 0.01	.01 1.00 1	14.00
E57/1302 Granted A1302_11 715367 6888108 56.44 0.04 5.73 2.24 0.12 0.14 0.001 0.02 0.08 0.07 E57/1302 Granted A1302_11 715367 6888108 56.44 0.04 5.73 2.24 0.12 0.14 0.001 0.02 0.08 0.03 E57/1302 Granted A1302_14 715641 6889698 52.98 0.32 5.36 4.19 0.14 0.98 0.019 0.03 0.78 0.78 0.78	0.01 3.87 !	5.77
E57/1302 Granted A1302_14 715641 6889698 52.98 0.32 5.36 4.19 0.14 0.98 0.019 0.03 0.78 0	0.01 0.16 1	11.51
	.01 0.08 1	10.82
	.01 0.44 1	12.23
E57/1302 Granted A1302_15 715579 6889705 56.71 0.08 4.53 2.49 0.07 0.07 0.002 0.01 0.17 -	0.01 0.12 1	11.60
E57/1302 Granted A1302_17 715157 6890791 56.27 0.02 7.97 0.94 0.13 0.11 -0.001 0.01 0.09 0.09	.01 0.07 9	9.80
E57/1302 Granted A1302_19 714702 6890654 24.37 0.02 61.90 0.46 0.02 0.03 0.001 0.01 0.03 -	0.01 0.03 ··	1.99
E57/1302 Granted A1302_20 71464 6890947 51.54 0.03 2.23 4.54 0.09 0.11 0.204 0.01 0.05 0.05	.01 13.65 4	4.82
E57/1302 Granted A1302_21 714790 6890865 57.83 0.15 5.31 2.60 0.11 0.27 0.013 0.06 0.11 0.	.17 0.15 8	8.38
E57/1304 Pending AUN001188 731931 6885666 54.86 0.21 9.32 2.05 0.13 0.08 0.031 0.00 0.02 0.02	.01 0.11 9	9.99
E57/1304 Pending AUN001189 732125 6885569 46.86 0.02 29.00 1.08 0.06 0.07 0.016 0.00 0.03 0.03 0.03	.02 0.05	3.37
E57/1304 Pending AUN001190 732164 6885589 61.63 0.15 4.68 1.09 0.05 0.09 0.009 0.01 0.04 0.04	.02 0.01 !	5.34
E57/1304 Pending AUN001191 732271 6885527 54.97 0.27 14.20 0.61 0.07 0.08 0.011 0.00 0.01 0.0	.01 0.03 !	5.97
E57/1304 Pending AUN001192 732353 6885511 65.17 0.08 1.66 1.14 0.03 0.03 0.012 0.00 0.02 0.00	.01 0.01 4	4.75
E57/1304 Pending AUN001193 732433 6885453 62.45 0.09 5.20 0.46 0.03 0.05 0.014 0.00 0.02 0.02	.01 0.01 4	4.72
E57/1304 Pending AUN001194 732620 6885397 51.78 0.16 17.25 1.30 0.05 0.13 0.016 0.01 0.20 0.20	.01 0.04 6	6.59
E57/1304 Pending AUN001195 732706 6885403 46.55 0.03 28.30 0.42 0.02 0.06 0.026 0.01 0.04 0.04	.02 -0.01	4.62
E57/1304 Pending AUN001196 732829 6885443 57.68 0.02 10.50 0.80 0.06 0.09 0.014 0.00 0.03 0.03	.01 0.02 6	6.42
E57/1304 Pending AUN001197 733079 6885543 58.46 0.13 9.70 0.92 0.05 0.12 0.015 0.01 0.99 0.	.02 0.01	4.84
E57/1304 Pending AUN001198 734947 6884630 32.51 0.02 48.70 0.29 0.02 0.04 0.008 0.01 0.06 0.00		4.11
E57/1304 Pending AUN001199 734911 6885245 56.37 0.03 5.26 2.37 0.07 0.06 0.269 0.01 0.07 0.07	.01 0.01 4	11.34

Tenement	Status	SampleID	Easting (GDA94)	Northing (GDA94)	Fe (%)	P (%)	SiO2 (%)	Al2O3 (%)	S (%)	CaO (%)	Cr2O3 (%)	K2O (%)	Mg (%)	Na2O (%)	TiO2 (%)	LOI (%)
E57/1304	Pending	AUN001200	735016	6885269	57.92	0.03	2.54	4.47	0.11	0.04	1.245	0.00	0.02	0.01	2.81	5.95
E57/1304	Pending	AUN001202	735231	6885173	53.46	0.07	13.80	1.74	0.08	0.09	0.027	0.01	0.07	0.01	0.04	7.84
E57/1304	Pending	AUN001203	735109	6885120	43.89	0.06	28.20	1.82	0.07	0.05	0.031	0.01	0.05	0.02	0.07	7.60
E57/1304	Pending	AUN001204	735063	6885148	62.25	0.03	1.77	2.36	0.09	0.02	0.572	0.01	0.02	0.01	2.73	3.55
E57/1304	Pending	AUN001205	734893	6884933	55.98	0.01	6.38	2.12	0.48	0.62	0.025	0.01	0.22	0.12	0.11	8.62
E57/1304	Pending	AUN001206	734917	6884809	59.60	0.15	3.86	2.32	0.11	0.20	0.013	0.01	0.12	0.03	0.12	8.39
E57/1304	Pending	AUN001207	734872	6884808	31.90	0.03	50.00	0.31	0.03	0.07	0.005	0.00	0.02	0.01	0.01	4.23
E57/1304	Pending	AUN001208	734402	6885021	25.74	0.03	62.00	0.34	0.01	0.02	0.008	0.01	0.01	0.01	0.01	1.11
E57/1304	Pending	AUN001209	733445	6884534	56.99	0.10	4.97	1.99	0.10	0.13	0.016	0.01	0.02	-0.01	0.06	10.80
E57/1304	Pending	AUN001210	733337	6884548	56.10	0.20	6.89	1.69	0.06	0.05	0.001	0.00	0.02	-0.01	0.03	10.37
E57/1304	Pending	AUN001211	732876	6884625	56.06	0.13	4.31	3.19	0.12	0.15	0.016	0.00	0.17	0.01	0.02	11.90
E57/1304	Pending	AUN001212	732337	6884529	61.14	0.16	3.31	1.21	0.04	0.04	0.010	0.01	0.03	0.01	0.01	8.07
E57/1304	Pending	AUN001213	732743	6884282	56.61	0.02	4.17	4.48	0.16	0.02	0.108	0.00	0.02	-0.01	4.30	5.91
E57/1304	Pending	AUN001214	732820	6884395	52.91	0.02	11.00	3.10	0.13	0.21	0.054	0.01	0.16	0.01	0.14	8.09
E57/1304	Pending	AUN001215	733213	6883741	56.35	0.23	8.40	2.65	0.08	0.07	0.032	0.03	0.05	0.01	0.12	8.12
E57/1304	Pending	AUN001216	733236	6883756	51.76	0.20	6.68	5.85	0.11	0.04	0.055	0.01	0.07	0.01	0.68	11.51
E57/1304	Pending	AUN001217	733260	6883782	59.62	0.05	3.36	3.90	0.14	0.23	0.204	0.01	0.03	0.01	1.86	4.05
E57/1304	Pending	AUN001218	732583	6883646	57.01	0.02	5.67	4.49	0.13	0.03	0.633	0.01	0.05	0.02	3.96	3.34
E57/1356	Pending	AUN001219	725170	6888622	48.80	0.02	9.18	3.71	0.12	0.08	0.381	0.01	0.03	0.01	8.94	7.69
E57/1356	Pending	AUN001220	725177	6888634	54.06	0.02	5.57	5.52	0.06	0.02	0.815	0.00	0.05	0.01	4.44	5.69
E57/1356	Pending	AUN001222	724490	6888747	61.89	0.08	3.15	1.08	0.07	0.06	0.005	0.00	0.03	0.01	0.06	6.90
E57/1356	Pending	AUN001223	724455	6888771	60.80	0.06	4.05	2.04	0.13	0.18	0.006	0.01	0.05	0.01	0.06	6.63
E57/1356	Pending	AUN001224	724263	6888739	61.06	0.04	2.04	1.22	0.07	0.08	0.041	0.00	0.03	0.02	0.28	9.34
E57/1356	Pending	AUN001226	724191	6888817	34.73	0.17	40.80	1.74	0.08	0.05	0.015	0.00	0.02	0.01	0.25	6.37
E57/1356	Pending	AUN001227	724276	6888907	56.55	0.05	9.72	3.04	0.06	0.09	0.088	0.01	0.04	0.02	3.45	3.51
E57/1356	Pending	AUN001228	724287	6888974	62.49	0.05	1.96	1.50	0.07	0.05	0.007	0.00	0.04	0.01	0.06	6.32
E57/1356	Pending	AUN001229	724315	6888983	65.18	0.04	1.98	1.04	0.06	0.06	0.003	0.00	0.03	0.01	-0.01	2.90
E57/1356	Pending	AUN001230	724218	6889057	61.74	0.07	4.59	1.48	0.14	0.14	0.015	0.01	0.02	-0.01	0.08	4.90
E57/1356	Pending	AUN001231	724186	6889143	52.93	0.11	13.40	1.51	0.09	0.08	0.004	0.01	0.03	-0.01	0.07	9.24
E57/1356	Pending	AUN001232	724736	6888697	28.52	0.02	55.50	0.70	0.03	0.06	0.019	0.01	0.03	-0.01	0.14	2.01
E57/1356	Pending	MD76885	724352	6889591	63.07	0.06	2.72	1.54	0.04	0.02	0.008	0.01	0.02	-0.01	0.04	4.88
E57/1356	Pending	MD76886	724406	6889585	63.17	0.17	1.62	0.98	0.04	0.02	0.005	0.00	0.02	-0.01	-0.01	6.15
E57/1356	Pending	MD76887	724510	6889592	60.97	0.34	1.97	0.92	0.04	0.03	0.137	0.01	0.02	-0.01	0.02	8.25
E57/1356	Pending	MD76893	724010	6889525	29.35	0.03	54.40	0.61	0.03	0.04	0.002	0.01	0.04	0.01	0.01	2.39
E57/1356	Pending	MD76894	724041	6889244	33.44	0.03	48.80	0.38	0.06	0.07	-0.001	0.00	0.02	-0.01	0.01	2.68
E57/1360	Granted	Md76945	719606	6884137	57.18	0.13	8.19	1.10	0.13	0.07	0.004	0.01	0.01	-0.01	0.25	7.91
E57/1360	Granted	Md76946	719616	6884143	54.38	0.14	12.70	1.09	0.11	0.03	0.001	0.00	0.01	-0.01	0.03	7.79
E57/1371	Granted	A1371_02	717485	6892937	51.85	0.33	15.20	1.22	0.05	0.12	0.013	0.01	0.11	-0.01	0.07	7.73
E57/1396	Granted	MD76895	736914	6879519	35.36	0.02	42.00	1.66	0.08	0.11	0.009	0.01	0.15	0.08	0.13	4.53
E57/1396	Granted	MD76896	736637	6880185	55.26	0.13	6.47	4.03	0.14	0.11	0.011	0.01	0.02	0.01	0.38	9.18
E57/1396	Granted	MD76897	736691	6880081	51.03	0.39	9.48	4.55	0.08	0.03	0.004	0.00	0.02	0.01	0.59	11.22
E57/1396	Granted	MD76898	736682	6880104	50.91	0.21	8.28	5.75	0.14	0.08	0.008	0.01	0.05	0.01	0.79	11.62

Tenement	Status	SampleID	Easting (GDA94)	Northing (GDA94)	Fe (%)	P (%)	SiO2 (%)	Al2O3 (%)	S (%)	CaO (%)	Cr2O3 (%)	K2O (%)	Mg (%)	Na2O (%)	TiO2 (%)	LOI (%)
M57/128	Granted	AS-1	723180	6892050	52.55	0.01	6.25	6.35	0.04	0.07	0.017	0.02	0.18	0.04	1.03	10.59
M57/128	Granted	AS-2	723499	6892468	54.46	0.02	3.75	7.06	0.08	0.03	0.114	0.01	0.09	0.01	3.40	7.49
M57/128	Granted	MD76805	722257	6892052	61.94	0.20	3.78	1.21	0.12	0.14	0.020	0.02	0.04	0.03	0.03	5.52
M57/128	Granted	md76806	722265	6892065	63.50	0.04	3.07	0.88	0.11	0.15	0.017	0.01	0.03	0.01	0.01	5.01
M57/128	Granted	MD76807	722295	6892084	60.72	0.13	3.71	1.19	0.08	0.10	0.013	0.01	0.03	-0.01	0.02	7.63
M57/128	Granted	MD76808	722331	6892082	59.09	0.13	6.71	1.42	0.08	0.09	0.002	0.01	0.02	0.01	0.02	6.38
M57/128	Granted	MD76809	722343	6892146	56.27	0.06	10.55	1.46	0.11	0.12	0.002	0.02	-0.01	-0.01	0.02	6.73
M57/128	Granted	MD76811	722343	6892187	58.52	0.10	6.44	2.59	0.08	0.03	0.003	0.01	0.02	0.01	0.07	6.84
M57/128	Granted	MD76812	721648	6892258	62.20	0.02	3.15	2.78	0.11	0.02	0.006	0.00	0.01	-0.01	0.08	4.74
M57/128	Granted	MD76813	721642	6892228	64.42	0.16	1.66	0.84	0.10	0.07	-0.001	0.01	0.01	-0.01	0.02	5.27
M57/128	Granted	MD76814	721559	6892249	57.03	0.02	15.45	1.14	0.05	0.04	0.007	0.02	0.01	0.01	0.05	1.93
M57/128	Granted	MD76815	721579	6892271	64.37	0.05	4.19	1.36	0.08	0.02	0.001	0.01	0.01	-0.01	0.08	2.64
M57/128	Granted	MD76816	721487	6892313	62.36	0.06	4.67	2.08	0.09	0.04	0.008	0.01	0.07	-0.01	0.10	4.13
M57/128	Granted	MD76817	721479	6892292	56.65	0.02	8.80	4.68	0.15	0.33	0.005	0.01	0.03	0.01	0.06	4.53
M57/128	Granted	MD76818	721341	6892289	39.36	0.09	37.40	0.76	0.02	0.02	0.001	0.00	0.01	-0.01	0.01	5.01
M57/128	Granted	MD76819	721140	6892336	61.28	0.02	1.90	1.80	0.10	0.02	0.012	0.00	-0.01	-0.01	0.13	8.53
M57/128	Granted	MD76822	721472	6892115	41.13	0.09	37.30	0.17	0.03	0.03	0.008	0.01	0.02	0.01	-0.01	2.75
M57/128	Granted	MD76823	721524	6892091	39.04	0.05	41.70	0.22	0.03	0.03	0.010	0.01	0.02	-0.01	-0.01	1.94
M57/128	Granted	MD76824	722051	6892154	63.99	0.05	1.62	0.64	0.05	0.09	-0.001	0.01	0.02	-0.01	0.02	5.92
M57/128	Granted	MD76825	722230	6892330	60.37	0.04	6.74	2.99	0.08	0.12	0.004	0.02	0.05	0.01	0.04	3.56
M57/128	Granted	MD76826	721679	6892069	58.84	0.14	4.33	1.89	0.09	0.08	0.054	0.01	0.02	0.01	0.07	8.98
M57/128	Granted	MD76827	722226	6892360	62.51	0.02	5.09	1.63	0.06	0.05	0.005	0.01	0.01	-0.01	0.02	3.58
M57/128	Granted	MD76828	722135	6892358	64.58	0.04	2.50	1.30	0.08	0.06	0.001	0.00	0.03	0.01	0.05	3.11
M57/128	Granted	MD76829	722136	6892358	56.99	0.02	7.66	6.03	0.05	-0.01	0.004	0.00	0.01	-0.01	0.07	3.87
M57/128	Granted	MD76831	722012	6892345	62.86	0.05	5.74	0.76	0.07	0.08	0.001	0.01	0.03	0.01	0.02	3.90
M57/128	Granted	MD76832	721932	6892320	61.89	0.02	3.71	0.69	0.08	0.09	0.003	0.01	0.04	0.01	0.01	6.26
M57/128	Granted	MD76833	723180	6891833	59.82	0.06	8.75	1.72	0.06	0.05	0.003	0.02	0.04	0.01	0.06	2.94
M57/128	Granted	MD76834	723357	6891377	63.04	0.18	1.53	1.35	0.07	0.02	0.003	0.00	-0.01	-0.01	0.03	5.94
M57/128	Granted	MD76835	723354	6891355	64.94	0.07	2.48	1.52	0.06	0.02	0.089	0.00	0.04	-0.01	0.04	3.19
M57/128	Granted	MD76836	723299	6891327	64.96	0.04	2.00	1.79	0.07	0.04	0.003	0.00	0.01	-0.01	0.01	2.50
M57/128	Granted	MD76837	723387	6891339	65.62	0.07	1.53	0.63	0.11	0.09	-0.001	0.02	0.03	-0.01	0.02	4.21
M57/128	Granted	MD76838	723430	6891367	61.34	0.04	5.07	1.89	0.10	0.03	0.005	0.01	0.01	-0.01	0.05	4.91
M57/128	Granted	MD76839	723502	6891349	65.17	0.07	1.64	0.83	0.09	0.08	-0.001	0.00	-0.01	-0.01	0.04	4.01
M57/128	Granted	MD76840	723487	6891380	66.92	0.04	1.58	1.00	0.05	0.01	0.003	0.00	0.02	0.01	0.05	1.80
M57/128	Granted	MD76842	723569	6891360	65.58	0.05	1.29	0.84	0.07	0.07	0.002	0.00	0.03	-0.01	0.02	3.25
M57/128	Granted	MD76843	723597	6891327	65.70	0.07	1.48	0.75	0.11	0.18	-0.001	0.01	0.01	-0.01	0.03	2.21
M57/128	Granted	MD76846	723534	6891556	53.42	0.01	9.34	8.51	0.06	0.03	0.006	0.01	0.03	0.01	1.07	4.91
M57/128	Granted	MD76847	723513	6891548	53.09	0.01	8.27	8.37	0.10	0.12	0.010	0.01	0.02	-0.01	1.01	5.47
M57/128	Granted	MD76848	723547	6891737	49.09	0.06	12.10	7.09	0.10	0.06	0.008	0.01	0.03	-0.01	0.59	9.91
M57/128	Granted	MD76849	723681	6891958	55.27	0.12	5.93	4.80	0.12	0.06	0.006	0.01	0.03	0.02	0.54	9.25
M57/128	Granted	MD76851	723719	6891955	42.68	0.02	16.60	13.20	0.11	0.10	0.013	0.01	0.03	0.01	1.16	6.80
M57/128	Granted	MD76852	723566	6890975	38.76	0.03	42.10	0.33	0.05	0.01	0.002	0.00	-0.01	-0.01	0.02	1.45

Tenement	Status	SampleID	Easting (GDA94)	Northing (GDA94)	Fe (%)	P (%)	SiO2 (%)	Al2O3 (%)	S (%)	CaO (%)	Cr2O3 (%)	K2O (%)	Mg (%)	Na2O (%)	TiO2 (%)	LOI (%)
M57/128	Granted	MD76889	722714	6892052	39.45	0.07	40.70	0.39	0.05	0.05	0.002	0.01	0.02	0.02	0.01	1.98
M57/128	Granted	MD76891	722508	6892175	63.74	0.08	3.81	0.69	0.08	0.07	0.006	0.00	0.01	-0.01	0.01	3.61
M57/128	Granted	MD76906	723194	6892077	49.11	0.01	10.40	7.36	0.02	0.05	0.022	0.02	0.08	0.05	2.51	8.78
M57/128	Granted	MD81677	723092	6891889	64.82	0.04	1.83	0.40	0.05	0.03	0.002	0.00	0.01	-0.01	0.01	4.51
M57/128	Granted	MD81678	723095	6891889	60.68	0.07	3.69	1.10	0.10	0.05	0.006	0.01	0.01	-0.01	0.01	7.78
M57/128	Granted	MD81679	723106	6891908	62.96	0.06	3.47	1.37	0.05	0.02	0.001	0.01	0.01	-0.01	0.05	4.61
M57/128	Granted	MD81680	723113	6891928	61.07	0.04	4.09	1.80	0.07	0.03	0.005	0.01	0.03	-0.01	0.08	5.86
M57/128	Granted	MD81681	723063	6891949	54.64	0.02	18.00	1.12	0.04	0.06	0.004	0.03	0.03	0.02	0.02	2.34
M57/128	Granted	MD81682	723057	6891959	59.38	0.03	11.55	0.87	0.05	0.06	0.005	0.02	0.03	0.01	0.02	2.20
M57/128	Granted	MD81683	722920	6892248	61.83	0.03	2.35	1.84	0.10	-0.01	0.012	0.01	0.01	-0.01	0.98	6.01
M57/128	Granted	MD81684	722909	6892233	61.82	0.03	3.49	3.06	0.10	0.01	0.009	0.01	0.02	-0.01	0.13	5.00
M57/128	Granted	MD81685	722894	6892222	61.42	0.05	5.70	2.40	0.07	0.04	0.012	0.03	0.08	-0.01	0.06	3.66
M57/128	Granted	MD81686	722842	6892309	41.08	0.07	34.70	0.79	0.02	0.01	0.001	0.08	0.02	-0.01	0.03	5.08
M57/128	Granted	MD81687	722834	6892343	61.78	0.05	4.66	2.38	0.07	0.02	0.014	0.01	0.03	-0.01	0.08	4.35
M57/128	Granted	MD81688	722816	6892333	59.57	0.05	6.20	3.52	0.11	0.05	0.006	0.02	0.07	0.01	0.07	5.47
M57/128	Granted	MD81689	722515	6892503	61.10	0.07	4.16	2.01	0.08	0.05	0.003	0.01	0.01	-0.01	0.04	5.87
M57/128	Granted	MD81690	722491	6892514	59.77	0.09	5.16	3.32	0.11	0.06	0.004	0.02	0.02	-0.01	0.18	5.66
M57/128	Granted	MD81691	722566	6892566	59.42	0.04	4.14	2.84	0.11	0.09	0.006	0.01	0.01	-0.01	0.16	7.53
M57/128	Granted	MD81692	722280	6892398	59.27	0.16	3.65	1.26	0.07	0.04	0.001	0.01	0.03	-0.01	0.03	8.91
M57/128	Granted	MD81693	722247	6892373	61.22	0.02	5.14	2.85	0.12	0.10	0.012	0.02	0.04	-0.01	0.13	3.48
M57/128	Granted	MD81694	722698	6892529	59.97	0.03	5.93	1.56	0.11	0.01	0.010	0.01	0.02	-0.01	0.80	5.46
M57/128	Granted	MD81695	722622	6892528	60.95	0.06	5.99	2.47	0.06	0.04	0.008	0.02	0.09	0.01	0.09	3.44
M57/128	Granted	MD81696	722565	6892510	61.52	0.07	5.16	1.12	0.07	0.08	0.004	0.02	0.03	-0.01	0.02	4.57
M57/128	Granted	MD81697	722543	6892509	54.33	0.04	15.30	1.98	0.06	0.05	0.002	0.00	0.03	-0.01	0.07	4.29
M57/128	Granted	MD81698	722354	6892163	59.62	0.05	6.34	1.94	0.10	0.07	0.005	0.01	0.02	-0.01	0.08	5.57
M57/128	Granted	SND_81645	722419	6892224	62.39	0.09	3.64	1.38	0.07	0.04	0.001	0.00	0.01	-0.01	0.04	6.01
M57/129	Granted	A029964	724000	6891052	59.51	0.05	4.55	3.77	0.10	0.01	0.011	0.01	0.01	-0.01	0.07	6.10
M57/129	Granted	A029965	724011	6891048	54.83	0.05	7.37	5.65	0.11	0.01	0.030	0.04	0.02	-0.01	0.20	7.16
M57/129	Granted	A029966	724003	6891054	49.08	0.03	20.10	2.98	0.10	0.01	0.006	0.00	-0.01	-0.01	0.03	5.44
M57/129	Granted	A029967	723919	6891049	59.54	0.16	5.94	2.29	0.06	0.05	0.016	0.01	0.01	-0.01	0.15	5.29
M57/129	Granted	A029968	723915	6890757	63.77	0.04	3.48	1.58	0.18	0.30	0.013	0.01	0.10	0.02	0.01	3.82
M57/129	Granted	A029969	724057	6890655	64.45	0.07	1.26	1.34	0.24	0.34	0.082	0.01	0.05	0.02	0.02	4.40
M57/129	Granted	A029970	724083	6890565	63.57	0.04	3.57	0.60	0.05	0.01	0.005	0.00	0.02	0.01	0.02	4.81
M57/129	Granted	A029972	724072	6890608	61.86	0.14	4.14	1.54	0.10	0.08	0.035	0.01	0.04	0.01	0.03	5.60
M57/129	Granted	A029985	723928	6891041	61.88	0.10	2.71	0.62	0.05	0.02	0.003	0.01	0.01	0.01	0.01	7.79
M57/129	Granted	A029986	723906	6891047	63.70	0.07	1.88	0.93	0.07	0.04	0.005	0.01	0.02	0.01	0.02	5.79
M57/129	Granted	A029987	723861	6891020	39.10	0.04	40.40	0.95	0.04	0.02	0.004	0.01	0.02	0.01	0.01	2.48
M57/129	Granted	A029988	723834	6891035	61.08	0.09	3.74	0.92	0.11	0.13	0.023	0.01	0.03	0.01	0.01	7.85
M57/129	Granted	AS-3	725020	6890926	58.74	0.02	2.18	3.51	0.11	0.08	0.126	0.01	0.04	0.01	5.57	4.32
M57/129	Granted	AS-4	725022	6891324	55.07	0.02	2.59	4.51	0.07	0.02	0.049	0.00	0.06	-0.01	5.96	7.85
M57/129	Granted	MD76844	723657	6891264	64.69	0.06	1.31	0.90	0.05	0.09	0.004	0.00	0.05	-0.01	0.02	4.86
M57/129	Granted	MD76845	723732	6891203	61.43	0.03	5.43	1.01	0.08	0.06	0.006	0.01	0.02	-0.01	0.02	4.97

Tenement	Status	SampleID	Easting (GDA94)	Northing (GDA94)	Fe (%)	P (%)	SiO2 (%)	Al2O3 (%)	S (%)	CaO (%)	Cr2O3 (%)	K2O (%)	Mg (%)	Na2O (%)	TiO2 (%)	LOI (%)
M57/129	Granted	MD76853	723812	6890844	63.54	0.07	2.52	0.93	0.10	0.14	0.004	0.01	0.03	-0.01	0.04	4.94
M57/129	Granted	MD76854	723849	6890804	65.65	0.02	1.36	0.78	0.05	0.03	0.006	0.00	0.02	-0.01	0.04	2.84
M57/129	Granted	MD76855	724359	6890845	63.28	0.05	2.50	2.37	0.10	0.05	0.003	0.01	0.01	-0.01	0.05	4.14
M57/129	Granted	MD76856	724338	6890823	64.53	0.03	4.03	0.84	0.04	0.02	0.010	0.00	0.01	-0.01	0.02	1.79
M57/129	Granted	MD76857	724431	6890757	64.87	0.04	2.39	1.39	0.10	0.11	0.005	0.01	0.01	-0.01	0.02	2.38
M57/129	Granted	MD76858	724539	6890694	62.00	0.08	3.40	1.43	0.12	0.12	0.006	0.01	0.01	-0.01	0.02	5.16
M57/129	Granted	MD76859	724657	6890644	62.72	0.07	3.10	2.60	0.06	0.02	0.007	0.01	0.01	-0.01	0.05	4.11
M57/129	Granted	MD76860	725017	6890925	57.61	0.02	1.78	3.37	0.09	0.01	0.123	0.00	0.01	-0.01	6.89	3.77
M57/129	Granted	MD76861	724413	6890432	61.78	0.12	4.71	2.05	0.09	0.10	0.026	0.01	0.01	-0.01	0.09	4.31
M57/129	Granted	MD76862	724342	6890461	65.20	0.09	1.80	1.13	0.06	0.05	0.009	0.01	0.03	-0.01	0.10	3.04
M57/129	Granted	MD76863	724188	6890479	63.04	0.07	2.75	1.03	0.06	0.03	0.005	0.00	0.01	-0.01	0.04	4.98
M57/129	Granted	MD76864	724147	6890429	60.80	0.07	4.61	1.32	0.06	0.02	0.001	0.01	-0.01	-0.01	0.17	6.19
M57/129	Granted	MD76865	724133	6890317	62.78	0.02	3.83	1.86	0.06	0.02	0.005	0.00	0.01	-0.01	0.03	3.64
M57/129	Granted	MD76866	724122	6890284	63.75	0.10	3.27	1.42	0.05	-0.01	0.008	0.01	0.01	-0.01	0.04	3.19
M57/129	Granted	MD76867	724115	6890198	60.12	0.02	4.46	1.90	0.09	0.11	0.008	0.01	0.01	-0.01	0.05	5.79
M57/129	Granted	MD76868	724142	6890073	58.95	0.01	9.02	1.69	0.06	0.03	0.006	0.02	0.02	-0.01	0.08	4.46
M57/129	Granted	MD76869	724312	6890100	61.02	0.01	7.41	1.07	0.06	0.05	0.007	0.01	0.03	-0.01	0.02	3.61
M57/129	Granted	MD76871	724546	6890279	64.94	0.04	2.31	1.53	0.14	0.09	0.003	0.02	0.02	-0.01	0.02	2.93
M57/129	Granted	MD76872	724401	6890438	64.36	0.02	1.86	0.96	0.07	0.06	0.006	0.01	0.01	-0.01	0.08	2.94
M57/129	Granted	MD76873	724484	6890365	62.54	0.07	4.40	0.74	0.04	0.05	0.004	0.01	0.03	-0.01	0.02	4.32
M57/129	Granted	MD76874	724975	6890517	62.55	0.03	4.43	2.09	0.10	0.05	0.006	0.01	0.02	-0.01	0.03	3.34
M57/129	Granted	MD76875	724971	6890564	61.50	0.03	2.69	2.43	0.10	0.03	0.022	0.01	0.01	-0.01	1.41	4.65
M57/129	Granted	MD76876	725066	6890547	65.15	0.03	1.74	0.67	0.04	0.03	0.004	0.00	0.01	-0.01	-0.01	4.04
M57/129	Granted	MD76877	725141	6890569	64.12	0.16	1.51	0.80	0.03	0.04	0.001	0.00	-0.01	-0.01	-0.01	5.76
M57/129	Granted	MD76878	724525	6890166	61.89	0.09	3.07	1.83	0.08	0.05	0.004	0.00	0.01	-0.01	0.02	5.83
M57/129	Granted	MD76879	724547	6890165	61.57	0.06	4.53	1.58	0.06	0.03	0.013	0.01	0.01	-0.01	0.09	6.05
M57/129	Granted	MD76880	724581	6890172	61.40	0.05	3.21	0.81	0.10	0.14	0.003	0.01	0.02	-0.01	0.01	6.27
M57/129	Granted	MD76882	724608	6890097	35.65	0.10	45.00	0.33	0.02	0.01	0.001	0.00	0.01	-0.01	-0.01	2.88
M57/129	Granted	MD76883	724091	6892907	62.28	0.04	3.60	1.37	0.09	0.09	0.027	0.01	0.03	0.01	0.03	5.30
M57/129	Granted	MD76884	724339	6889629	63.64	0.05	2.58	1.93	0.07	0.04	0.005	0.00	0.06	-0.01	0.03	3.30
M57/129	Granted	MD76888	724487	6889625	67.08	0.01	2.82	0.31	0.03	0.06	0.005	0.02	0.10	0.02	0.01	1.54
M57/129	Granted	MD76892	724111	6889625	47.23	0.22	20.00	2.33	0.09	0.03	0.018	0.00	0.03	-0.01	0.05	9.29

Annexure F – JORC Tables

Sandstone Project RC Drilling and Pulp Re-Assay

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the	 Sampling reported consists of new RC drilling completed by Aurumin (AUN0 and historical drill pulps originally drilled by Middle Island Resources (MDI)
	minerals under investigation, such as down hole gamma sondes, or handheld	 Reverse Circulation (RC) drilling samples were collected as 1m intervals and 4m composites.
	XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to	• The 1m samples were collected from a cone splitter via the cyclone directly into pre-numbered calico bags, creating a nominal 2.5kg sample.
	ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	• Samples were also placed on the ground in sequence at 1m intervals and used for geological logging and for composite sampling.
	<i>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work</i>	• The 4m composite samples were collected from the 1m sample interval sample piles using a PVC spear to create a sample of approximately 1.5-3.5kg.
	has been done this would be relatively simple (eg' reverse circulation drilling was used to obtain 1 m samples from	• Only 1m samples were submitted for iron analyses, composite samples were not, except in cases of historical pulps were 1m samples were unavailable
	which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	• MDI RC drilling sampling was undertaken by collecting 2- 3kg of RC chips from the drill rig's cone splitter at 1m intervals. Intervals of expected gold mineralisation were analysed at 1m intervals immediately. Other intervals were composited to 4m intervals from the 1m with a single-tier riffle splitter. The pulps were retained and stored in labelled boxes
		• Samples were submitted to ALS Laboratories for drying and pulverising to produce a nominal 50g charge for gold by fire assay analysis.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-	• AUN RC holes were drilled using KWL 380 mounted on an 8x8 MAN truck with onboard 1100/350) air and supported by 1000cfm auxiliary, Hurricane 2400CFM 1000psi booster.
	sampling bit or other type, whether core is oriented and if so, by what method, etc).	• Drilling was conducted using a 5¼ inch face sampling hammer.
		• RC holes were surveyed downhole using an Axis Champ Gyro north seeking survey tool at 30m intervals.
		• MDI RC holes were drilled with a variety of drilling companies and rigs. A 5¼ inch face sampling bit was used to collect 1m samples.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 Recovery of AUN drill cutting material was monitored via sample bag and reject pile size.
	Measures taken to maximise sample	• RC recovery data was estimated and recorded in digital

	Criteria	JORC Code expl
		<i>recovery and ens nature of the san Whether a relation sample recovery whether sample due to preferenti fine/coarse mate</i>

Criteria	JORC Code explanation	Commentary
	<i>recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and</i>	geological logs. In most instances recoveries were considered adequate. Where recovery was poor, this was recorded in the logs and noted when assay results were reviewed.
	aue to preferential loss/gain of	• The cyclone was regularly checked and cleaned.
	fine/coarse material.	 Based on the sampling method and sample weight no bias in the 1m sampling process has been identified.
		• MDI recorded RC chip recovery for many of their drill programmes in a digital logging software package. Recovery was considered to be excellent with minor exceptions in some sheared/faulted intervals. Samples were at a consistent weight of 2–3 kg and consistently dry. In some isolated cases (<1% of the MDI samples), wet samples were produced when faults/shear zones with higher water flows were intercepted. A limited amount of wet drilling is noted for previous operators of the project, representing less than 1% of the total sampling database. Wet RC sampling and potential downhole smearing does not appear to be an issue.
		• There is no known relationship between recovery and grade in sampling.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	 All RC drilling was geologically logged by a qualified geologist at the time of drilling.
	 appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, Logging included, where lithology, alteration, mine description. Logging was qualitative in 	lithology, alteration, mineralogy, vein quantification and
		Logging was qualitative in nature.
	<i>channel, etc) photography. The total length and percentage of the</i>	All holes are geologically logged in full.
	relevant intersections logged.	Geotechnical logging has not been carried out.
Sub-sampling techniques and sample	<i>If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether</i>	• AUN 1m samples were collected from a cone splitter via the cyclone directly into pre-numbered calico bags, creating a nominal 2.5kg sample.
preparation	sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique.	• Composite samples were created using a PVC spear to collect sample from the reject 1m intervals placed on the ground. These were placed into pre-numbered calico bags.
	<i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the</i>	• All samples were submitted to ALS laboratories in Perth. Most samples were dry with some moisture present at depth in some holes.
	<i>sampling is representative of the in situ material collected, including for</i>	• Field Duplicate samples were taken as per Aurumin's QAQC sample procedure at a rate of 1:20.
	<i>instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.</i>	• Sample preparation for drill samples involved drying the whole sample before crushing and pulverising it to 85% passing 75 microns. A 50g sub-sample charge was then used for gold analysis by fire assay.
		• Samples where raw sample weight is greater than 3kg are fine crushed to 70% passing 2mm, then split using a Boyd Rotary Splitter to produce a 3kg sample which is

JRUMI	N	ASX Announcer
	ED	11 April
Criteria	JORC Code explanation	Commentary
		then pulverised to 85% passing 75 microns.
		• QAQC samples were inserted in the field as per Aurumin's QAQC sample procedure.
		• Sample sizes are considered appropriate for the c size of material sample.
		 MDI RC drilling sampling was undertaken by colle 2-3kg of RC chips from the drill rig's cone splitter intervals. Intervals of expected mineralisation wer analysed at 1m intervals immediately. Other inter were composited to 4m intervals from the 1m wit single-tier riffle splitter.
Quality of assay data and laboratory tests	ηγηγεραιίτες μέρα από ψηρτηρή τηρ	 Samples were analysed using ALS Global's ME-XRF method; a lithium borate fusion and XRF technique technique is widely used within the industry for irc analysis and is considered a total analysis for the elements assayed.
		 In-Lab QA/QC procedures include insertion of sta blanks and duplicates, sizing checks and repeat an are standard procedure.
		 Aurumin QAQC procedures collect field duplicates insert certified reference materials (CRMs). Standar were inserted at a rate of 1:20 while blanks were in at 1:50. Duplicate samples are taken every 1:20.
		 The assaying techniques and quality control proto used are considered appropriate for the material t and for the data to be used for reporting explorati drilling results.
		• No geophysical tools were used in determining ele concentrations.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 No independent verification of results has been conducted.
assaying		• All sampling and assay data are stored in a secure d with restricted access.
		• Twinned holes are not considered necessary at this
		• Field data were collected digitally into Excel sprea at the time of logging. Logging data was valid geological staff and then imported into the Aurumin database.
		• All data is backed up to a cloud-based storage sys
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic	• Drill collars were located using a GPS by Aurumin Differential GPS will be used to finalise hole location
		• The grid system used is GDA94/MGA94 Zone 50.
		 The difference between magnetic north (MN) and north (TN) is 0.53°. The difference between TN and 1.07°.

11 April 2025

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Drill holes were spaced variably to allow for best drilling of the target areas. Data density is appropriately indicated in the presentation with all sample positions shown in the plans provided. No Mineral Resource is reported
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Drilling is designed to be orthogonal to strike and dip of the interpreted mineralisation. Drill azimuths vary according to the interpreted mineralisation No sampling bias from the orientation of the drilling is believed to exist. Assay results are reported as downhole widths.
Sample security	<i>The measures taken to ensure sample security.</i>	 All AUN samples were collected by Aurumin and stored onsite in a secure location before being transported to Perth by consignment in sealed bags.
		• MDI Chain of custody was managed by MDI geological personnel. Samples were stored on site until collected for transport to the laboratory in Perth WA. MDI personnel had no contact with the samples once they were picked up for transport. Tracking sheets were set up to track the progress of samples. After analyses pulps were returned from the laboratory and stored in secure, labelled boxes.
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	• No audits or reviews have been completed to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Central Sandstone project is located on granted tenements M57/128, M57/129 and M57/654. Drilling reported is on M57/128 and M57/129. These tenements are wholly owned by Aurumin. The project is located in the Sandstone Shire, approximately 10 kilometres south of Sandstone. The historical town site of Nungarra is located on M57/128 but does not impede or encroach on any known resources.
		• No impediments are known at the time of reporting.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• Gold exploration in the Sandstone area has occurred since the late 1800s.
		 Modern production commenced in 1993 from laterite material. Subsequently, in 1994, Herald constructed a CIP processing plant and began open pit mining.
		• Mining continued at various deposits until 2010.
		 Middle Island Resources acquired the project in 2016 and completed substantial exploration drilling, resource drilling and mining pre-feasibility work.
		 Aurumin acquired the project in 2022 and has been actively exploring.
		Little to no iron exploration has occurred prior to Aurumin
Geology	Deposit type, geological setting and style of mineralisation.	 Hematite and goethite mineralisation associated with potential supergene and or hypogene enrichment of banded iron formations are targeted for direct shipping iron ore.
		• The Sandstone Greenstone Belt ("SSGB") is a triangular shaped Archean greenstone belt located towards the northern end of the Southern Cross Province, the central spine of the Archaean Yilgarn Block. The SSGB sits at the northern end of the Diemals Dome, at the juncture of the Youanmi Fault and Edale Fault, two major trans-cratonic faults which bound the west and east sides of the belt respectively.
		• The southern half and core of the belt, dominated by ultramafic and high magnesian mafic volcanics with numerous interflows of oxide-facies Banded Iron Formation ("BIF"). Along the southern margin of the belt these rocks are in direct contact with the Diemals Dome.
		• The northern part and flanks of the belt, dominated by mafic volcanics and syn-volcanic mafic sills, BIF interflow units are common. Ultramafic volcanics and/or intrusives are rare.
		• Siliciclastic sediments other than BIF are restricted to a small teardrop-shaped basin at the northern apex of the belt. A variety of felsic rocks intrude the greenstones, ranging from granite, granodiorite, to various quartz-eye and feldspar- phyric porphyries.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and	• A drill hole information summary for drilling associated with the announcement is available in Annexures.

Criteria	JORC Code explanation	Commentary
	<i>interception depth hole length.</i> <i>If the exclusion of this information is</i> <i>justified on the basis that the</i> <i>information is not Material and this</i> <i>exclusion does not detract from the</i> <i>understanding of the report, the</i> <i>Competent Person should clearly</i> <i>explain why this is the case.</i>	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values	 Lithology is aggregated based on the primary lithological unit logged. Reported mineralised intervals are reported as downhole weighted averages. No grade truncations or lower cutoffs are used. AUN RC reported mineralised intervals are 1m samples MDI pulps are either 1m samples (preferenced where available) or 4m composite samples. The 4m composites are flagged in the drillhole table in the annexure. No top-cut has been applied to assays when compiling composites.
Relationship between mineralisation widths and intercept lengths	should be clearly stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 Drill holes are designed to be perpendicular to the interpreted mineralisation. Downhole widths are reported
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Refer to figures in body for spatial context of the drilling. A plan view and sectional view is provided. Significant results are tabulated in the annexures.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All relevant data to targets is discussed and included on plans, sections and tables.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and	 No other information is considered material for this presentation.

Criteria	JORC Code explanation	Commentary
	<i>method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i>	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Further compilation and assessment of results. Follow-up drill planning

Sandstone Rock-Chip Sampling

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation		Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg' reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	•	Rock-chip samples collected from surface of subcrop/outcrop areas and selected following field inspection by qualified field geologists. Sampling was conducted on an irregular basis on outcropping iron formations preferentially sampling outcrop that exhibited strong hematite / goethite enrichment . Typically outcrops that classified as cherty BIF or Jasperitic BIF were excluded from sampling. Sampling was conducted by Aurumin geological staff. The sampling practice is appropriate to the style of mineralisation sampled, and complies with industry best practice.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	•	Not applicable for rock-chip sampling.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	•	Not applicable for rock-chip sampling.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or	•	Samples were geologically logged by geological staff at the time of collection. Logging is considered qualitative in nature.

11 April 2025

Criteria	JORC Code explanation	Commentary
	quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 Sample sizes were approximately 2kg of composite rock sample. Material submitted are appropriate in size for the analysis being conducted. Samples were weighed, crushed and pulverised at the laboratory prior to subsampling for analysis. Field duplicates were not collected for this round of sampling
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Samples were analysed using ALS Global's ME-XRF21u method; a lithium borate fusion and XRF technique. This technique is widely used within the industry for iron ore analysis and is considered a total analysis for the elements assayed. In-Lab QA/QC procedures include insertion of standards, blanks and duplicates, sizing checks and repeat analyses are standard procedure. Aurumin analytical quality control procedures consisted of the inclusion of a Certified Reference Material (CRM) at a rate of 1:20. QC data from sample analysis indicate acceptable level of accuracy and precision with the data. The assaying techniques and quality control protocols used are considered appropriate for the data to be used for reporting exploration soil geochemistry results.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 No independent verification of results has been conducted. All samples and data were stored in Excel spreadsheets with restricted access. Digital sample submission forms provided the sample identification numbers accompanying each submission to the laboratory. Assay data is not adjusted
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 Samples were located using a handheld GPS with an accuracy of ± 3m. The grid system used is GDA94/MGA94 Zone 50.

11 April 2025

Criteria	JORC Code explanation	Commentary
	Specification of the grid system used. Quality and adequacy of topographic control.	
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Samples were selectively taken based on the geologist's discretion and available subcrop/outcrop Data density is appropriately indicated in the presentation with all sample positions shown in the plans provided. No sample composites. No Resources or Ore Reserve estimations are presented.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Rock-chip sampling only and samples selected from limited subcrop and outcrop areas. Sampling is reconnaissance in nature and may introduce a bias in results. Sampling was conducted on an irregular basis on outcroppin iron rich rocks and preferentially targeted samples that were exhibited strong hematite / goethite enrichment Outcrops exhibiting limited hematite / goethite enrichment were not sampled and the areas excluded from mapped enrichment zones. Typically outcrops that classified as chert BIF or Jasperitic BIF were excluded from sampling. Sampling representivity is unknown at this early stage of exploration sampling.
Sample security	The measures taken to ensure sample security.	 Rock-chip samples were collected in and placed in numbered calico bags before being transported to the laboratory. All sample collection was supervised by Aurumin and stored onsite in a secure location before being transported to Perth Samples were transported by Aurumin personnel to ALS Global's laboratory in Perth for analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• No audits or reviews have been completed to date.

11 April 2025

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 Rock-chip results are reported on granted tenements; M57/128, M57/129, E57/1102, E57/1140, E57/1371, E57/1254, E57/1396, E57/1279, E57/1360, E57/1294, and E57/1302 and on pending tenement grant; E57/1285, E57/1304, and E57/1356.
		All granted tenements are wholly owned by Aurumin.
		 All pending tenements will be transferred to Aurumin ownership on grant.
		• The project is located in the Sandstone Shire, approximately 10 kilometres south of Sandstone.
		• The historical town site of Nungarra is located on M57/128 but does not impede or encroach on any known resources.
		No impediments are known at the time of reporting.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• Gold exploration in the Sandstone area has occurred since the late 1800s.
		 Modern production commenced in 1993 from laterite material. Subsequently, in 1994, Herald constructed a CIP processing plant and began open pit mining.
		• Mining continued at various deposits until 2010.
		 Middle Island Resources acquired the project in 2016 and completed substantial exploration drilling, resource drilling and mining pre-feasibility work.
		• Little iron ore exploration is noted in the area.
		 Aurumin acquired the project in 2022 and has started exploration.
Geology	Deposit type, geological setting and style of mineralisation.	 Hematite and goethite mineralisation associated with potential supergene and or hypogene enrichment of banded iron formations are targeted for direct shipping iron ore.
		• The Sandstone Greenstone Belt ("SSGB") is a triangular shaped Archean greenstone belt located towards the northern end of the Southern Cross Province, the central spine of the Archaean Yilgarn Block. The SSGB sits at the northern end of the Diemals Dome, at the juncture of the Youanmi Fault and Edale Fault, two major trans-cratonic faults which bound the west and east sides of the belt respectively.
		 The southern half and core of the belt, dominated by ultramafic and high magnesian mafic volcanics with numerous interflows of oxide-facies Banded Iron Formation ("BIF"). Along the southern margin of the belt these rocks are in direct contact with the Diemals Dome.
		 The northern part and flanks of the belt, dominated by mafic volcanics and syn-volcanic mafic sills, BIF interflow units are common. Ultramafic volcanics and/or intrusives are rare.
		Siliciclastic sediments other than BIF are restricted to a small

11 April 2025

Criteria	JORC Code explanation		Commentary
			teardrop-shaped basin at the northern apex of the belt. A variety of felsic rocks intrude the greenstones, ranging from granite, granodiorite, to various quartz-eye and feldspar- phyric porphyries.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	•	Not applicable for rock-chip sampling.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	•	Not applicable for rock-chip sampling.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	•	Not applicable for rock-chip sampling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and	•	Location plans are included in the release. A sample information summary for data associated with the announcement is available in Annexures

11 April 2025

Criteria	JORC Code explanation	Commentary
	appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All relevant data to targets are discussed and included in plans, sections and tables. Reporting of the results is considered balanced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No other information is considered material for this presentation.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	• Further analysis, sampling, prioritisation and drill planning.