ASX:AUN

2 July 2024

EXPLORATION UPDATE – SANDSTONE ADDITIONAL POSITIVE RESULTS FROM APRIL DRILLING CAMPAIGN, SOIL SAMPLING RESULTS AND DRILLING PLANS

Aurumin Limited (ASX: AUN) ("Aurumin" or the "Company") is pleased to announce that the final split sample (1m) results for the April RC drilling programme at the Company's 100% owned, 881koz Au, Central Sandstone Project, located 520km north-east of Perth, have been returned.

The drilling campaign tested 7 new open pit targets with first pass exploration drilling, and aimed to extend 2 open pit resources (see ASX releases 15 April and 28 May 2024). The campaign was a success, with 4 of the 7 new targets returning positive results and extensional drilling returning a bonanza result at the Plum Pudding deposit.

In addition, the Company is pleased to announce further soil sampling results with positive returns from E57/1140, and outline drilling plans for multiple targets. Drilling plans include follow up from recent success at Plum Pudding and other mining lease targets, as well as stepping out to the prospective Birrigrin and Dandaraga Projects.

This work is part of the Company's Sandstone Operations, which include the Central Sandstone Project as well as the Birrigrin and Johnson Range Projects, and has a total Resource of 946koz Au. The company is actively working towards building open pit inventory to support a restart of gold production.

Highlights

New 1m interval sample results, following previous composites reported:

Mt Klempt South - New Target:

• SN_XP_RC_24_0006	2m @ 11.02g/t Au from 16m
• and	1m @ 1.20g/t Au from 22m
• and	2m @ 1.24g/t Au from 34m
 SN_XP_RC_24_0002 	3m @ 1.26g/t Au from 51m
 SN_XP_RC_24_0007 	2m @ 3.69g/t Au from 44m

Two Mile Hill West - New Target:

- SN_XP_RC_24_0018
 1m @ 3.87g/t Au from 71m
- and 3m @ 2.19g/t Au from 77m

Old Town Trend - New Target:

- SN_XP_RC_24_0010 2m @ 3.44g/t Au from 37m
- and **2m @ 1.03g/t** Au from 45m
- SN_XP_RC_24_0013 **1m @ 1.97g/t** Au from 42m

Previously released 1m interval sample results included (see ASX announcement 28/05/2024):

Plum Pudding Extensional Drilling:

- SN_XP_RC_24_0036 18m @ 25.80g/t Au from 30m (including 2m unexpected void @ 0.0g/t)
- including **2m @ 215.20g/t** Au from 43m
- and **7m @ 1.48g/t** Au from 71m

Highlights - Continued

Ultrafine Soil Results

- Results returned for tenement E57/1140
- Several new targets generated; coincident with structural and stratigraphic targets
- Results pending for tenement E57/1102, northern portion

Next drilling campaign

- RC drilling planned across multiple targets
 - Approx 35 holes and 3,000m across 6 areas planned
- Drilling Contractor and last permits being finalised
- Air Core drilling planned at several areas for wider coverage
 - Approx 75 holes and 5,000m across 3 areas planned
- Drilling campaign will step out to regional projects and prospects, for the first time for Aurumin at Sandstone
 - Birrigrin Project history of high-grade production up to 196g/t Au and 39 mapped shafts
 - Dandaraga Prospect historical workings and highly prospective

Aurumin's Managing Director, Brad Valiukas, commented:

"We have had great results from the April drilling campaign. Testing new targets, we achieved significant results at four out of the seven targets, and the final split (1m) results further support this. Additionally, we received a bonanza result with extensional drilling at Plum Pudding, with a top assay of 344g/t and an unexpected void, likely old workings.

"We remain focussed on generating the critical mass required for future production at our Sandstone Operations, targeting additional open pit material to support an operational restart. This next round of drilling will look to expand the existing Resource at Plum Pudding, flesh-out some of the confirmed new targets on the mining leases and step further afield to the Birrigrin Project and Dandaraga prospect to target some potential higher-grade sweeteners.

"We are spoilt for choice with prospective drilling targets and we look forward to this quarter's drilling and continuing to advance the project, with drilling expected to commence August."

PLUM PUDDING

URUM

The Plum Pudding Resource is located 800m west of the Sandstone Processing Plant footprint and 3km west of the Ridge and McClaren deposits. At Plum Pudding there are limed laterite workings, an existing resource of 14,100oz and likely some minor underground workings, identified in the April drilling campaign.

Completed Work and Interpretation

Recent drilling at Plum Pudding successfully extended and confirmed that the resource remains open on the margins, with an outstanding result of 18m @ 25.80g/t Au from 30m and 7m @ 1.48g/t Au 71m (Figure 1).

Mineralisation at Plum Pudding occurs as a sub-vertical zone of stockwork quartz veining within sheared ultramafic rocks. The bonanza grade intercept may represent a localised sub-horizontal supergene enrichment, potentially from a hitherto unidentified sub-vertical structure. Gold mineralisation was observed to persist in stockwork veining from the oxide into fresh ultramafic rock.

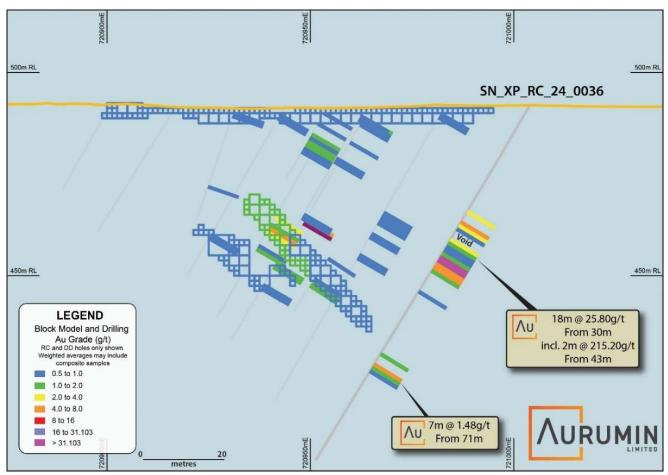


Figure 1 – SN_XP_RC_24_0036 with assays. 20m window, block model clipped to section; looking north on 6889831mN.

Targets and Planned Work

A programme of 10 holes for approximately 800m has been designed to test for both for lateral and strike extensions where the deposit remains open (Figure 2). Several of the holes are designed to simultaneously test for feeder and stronger internal structures.

2 July 2024

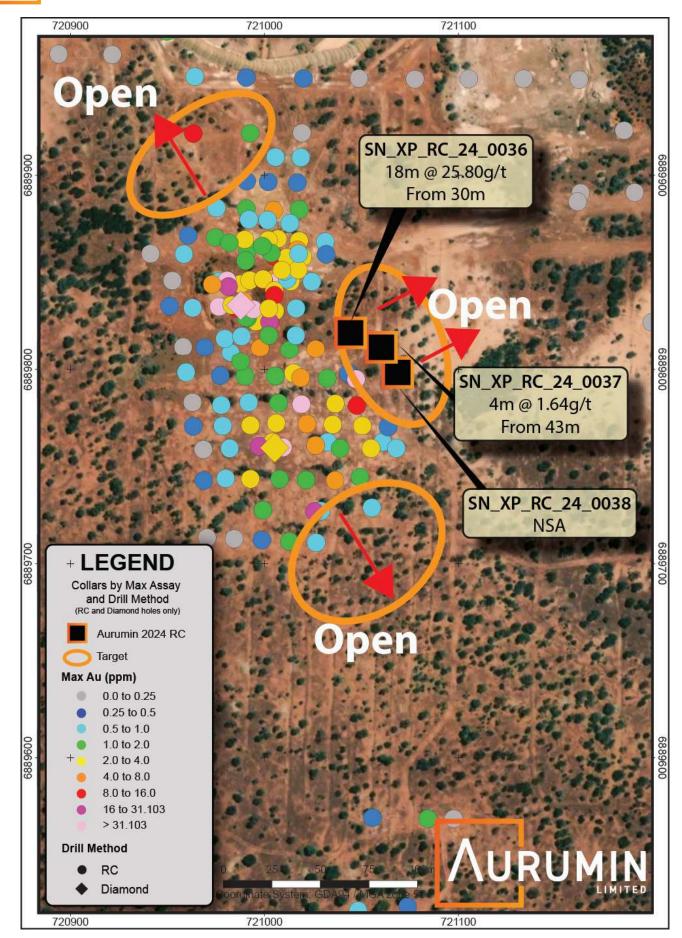


Figure 2 – Plan View of Plum Pudding Drilling

MT KLEMPT SOUTH

The Mt Klempt South target area is located 1.5km east of the Sandstone Processing Plant footprint and 0.5km west of the Ridge and McClaren deposits. Aurumin's 2022 Auger programme confirmed a strong gold anomaly, which coincides with areas of extensive prospector activity and some shallow historical workings.

Completed Work and Interpretation

The April programme of 6 holes at Mt Klempt South was designed to test for shear type mineralisation and potential relationships to interpreted intrusive bodies. The area has been historically mined by scraping with further pushing and detecting by generations of prospectors. There are several shallow workings preserved however the bulk of activity appears to have terminated at the extensive hard cap.

Four of the six holes from the April drilling campaign returned intersections consistent with structurally controlled mineralisation. Critically the mineralisation identified is below the hard cap and alluvial signatures that swamp the area. Mineralisation appears to be associated with quartz veining and shearing and has potentially identified subparallel high-grade structures over a strike of 160m at shallow depths.

Highlights form the April drilling campaign include 2m @ 11.02g/t Au from 16m (SN_XP_RC_24_0006), 2m @ 3.69g/t Au from 44m (SN_XP_RC_24_0007) and 3m @ 1.26g/t Au from 51m (SN_XP_RC_24_0002) (Figure 3).

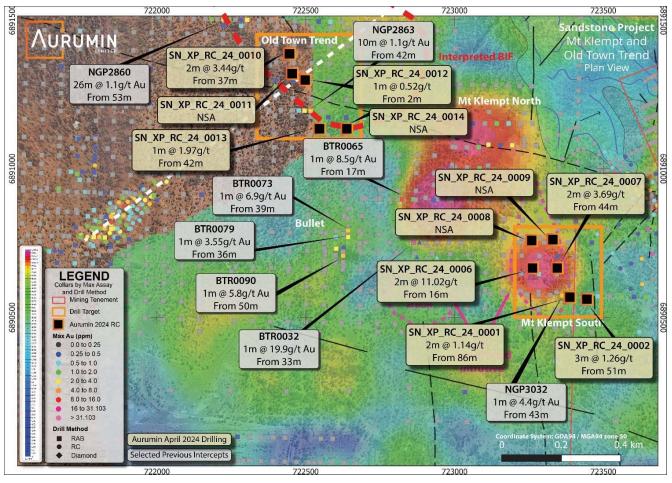


Figure 3 – Old Town Trend and Mt Klempt South Drilling Results Over Gridded Auger Gold Geochemistry.

Targets and Planned Work

Drilling is planned to follow up the April drill campaign's positive results. The 2m @ 11.02g/t Au within SN_RC_XP_24_0006 was from a clay shear zone adjacent to narrow felsic intrusive at 16m and four holes returned intersections consistent with structurally controlled mineralisation.

2 July 2024

A programme of air-core drilling has been designed to confirm and better define the mineralisation and ensure coverage of the overall target area. Drilling will include scissor holes to assist in establishing orientation, is planned on 6 lines and seeks to establish shallow high-grade mineralisation over a strike of 300m (Figure 4).

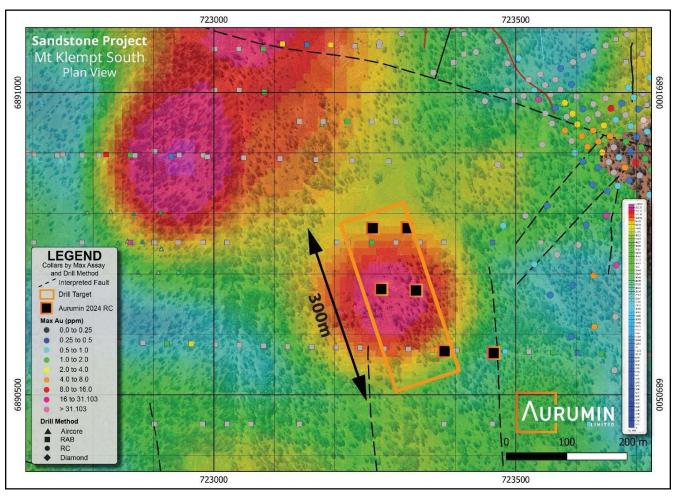


Figure 4 – Mt Klempt South Targets Over Gridded Auger Gold Geochemistry.

OLD TOWN TREND

The Old Town Trend Target was identified in Aurumin's 2022 auger geochemical programme. The target represents the intersection of the projection of the ENE striking mineralised trend that hosts the Old Town Well Resource and southeast striking stratigraphy. A low west-northwest striking fault has been interpreted to run through the area.

Completed Work and Interpretation

Several positions were drilled in the April campaign. Quartz veining was intercepted in all holes, with the best results received from SN_XP_RC_24_0010 which returned 2m @ 3.44g/t Au from 37m and 2m @ 1.03g/t Au from 45m. Hole SN_XP_RC_24_0013 also returned 1m @ 1.97g/t Au from 42m (Figure 3).

Drill hole SN_XP_RC_24_0010 is the most northerly of the holes drilled, and the hole most closely targeting the projected trend of the inferred Old Town Well structure. Results were closely associated with massive quartz veining suggesting a structural component and were consistent with historical RAB drilling approximately 150m to the southeast which included 10m @ 1.1g/t Au (NGP2863) and 26m @ 1.1g/t Au (NGP2860). A further 200m to the northwest of this intercept historical RAB drilling has returned similar shallow but wide intercepts 26m @ 1.1g/t Au (NGP2860). The drilling at Old Town Trend has highlighted a 400m prospective corridor striking northwest southeast.

Targets and Planned Work

Mineralisation identified to date is low grade but shallow and potentially extensive along 600m of prospective lithology. Air Core drilling will test this prospective ground over 8 lines, seeking to identify further shallow occurrences and potential higher-grade zones (Figure 5).

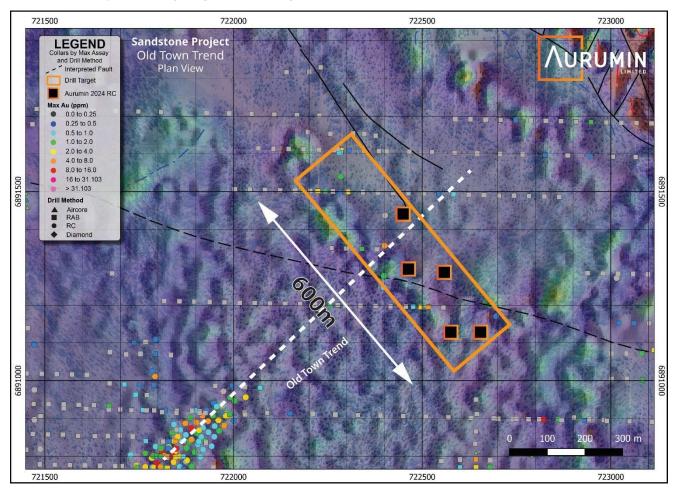


Figure 5. Old Town Trend Target Over Magnetic 2VD image.

TWO MILE HILL WEST

Two Mile West is an interpreted extension of the BIF that hosts the Shillington deposit and is located 800m directly west of the Two Mile Hill open pit.

Completed Work and Interpretation

Drilling at Two Mile Hill West was designed to test a 400m broadly defined north-northwest trending structural corridor, interpreted to host several north striking faults that represent potential gold feeder structures to multiple BIF horizons, and a resultant 600m gold in soil anomaly in the target area.

Final results from the April drilling campaign include 3m @ 2.19g/t Au from 77m and 6m @ 0.68g/t Au from 89m (SN_XP_RC_24_0018) surrounding completely clay altered zones within the BIF and mafic succession. The localised clay zones may represent the inferred structural features (Figure 6).

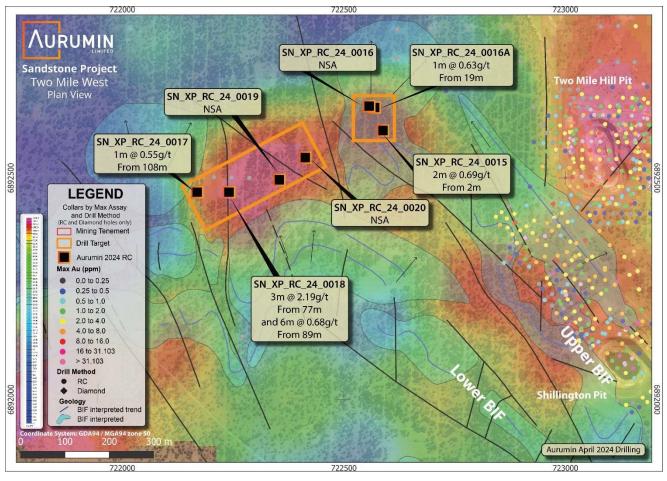


Figure 6 – Two Mile Hill West Drilling Results Over Gridded Auger Gold Geochemistry.

Targets and Planned Work

A follow up programme of drilling has been planned to target the BIF units at several positions within the apparent shear corridor, trending north-south, with the aim of identifying a shallow or shallowing mineralised position. The shears are spatially associated with a small tonalite intrusion identified in historical RAB and the relationship between the two features will be investigated (Figure 7).

Approximately 6 holes of RC for 480m is planned.

2 July 2024

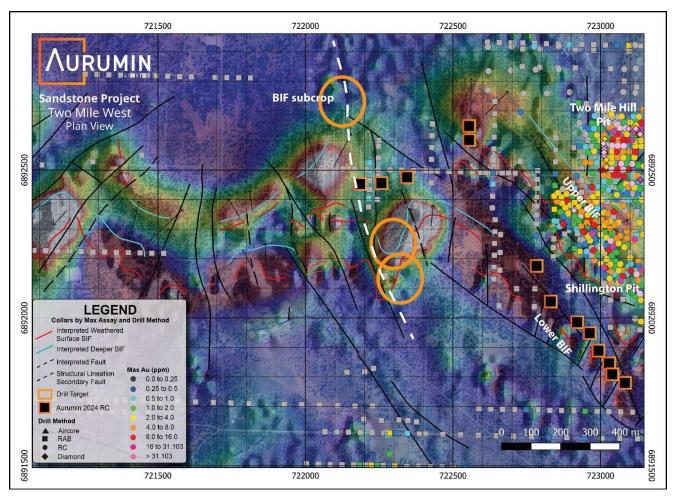


Figure 7. Two Mile Hill West Targets Over Magnetic 2VD image.

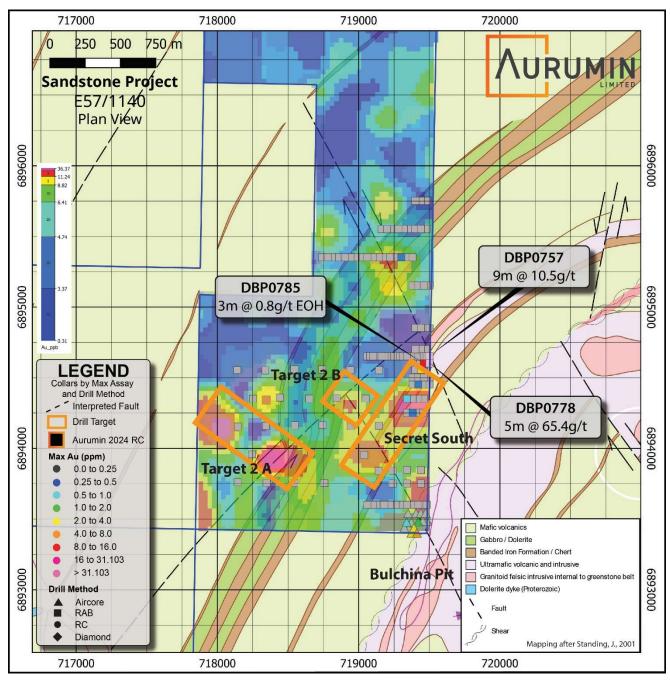
E57/1140 ULTRAFINE SOIL RESULTS

Tenement E57/1140 is located 3.5km to the west of the Central Sandstone mining leases. In the southern end of the lease the geology is characterised by a north-northeast striking mafic volcanic sequence surrounding a series of narrow BIF, and dolerite/gabbro with a known, approximately bedding conformable, felsic intrusive. The stratigraphy is crosscut in places by northwest striking faults generating prospective cross cutting structural controls. In the north of the tenement the geology folds through ~40 degrees.

Completed Work and Interpretation

Ultrafine soil geochemistry results for the southern portion of tenement E57/1140 have been returned. Aurumin previously reported results for the northern portion of the tenement with several prospective areas identified (see ASX announcement 30/01/2023).

These new results were collected on a 100 by 200m spaced grid on east-west lines. The results have highlighted a number of additional prospective anomalies that are coincident with structural and stratigraphic targets. The targets are sited west and north of the previously mined Bulchina open pit (Figure 8).


The Secret South area is a strong gold anomaly that traces the trend of a felsic intrusive striking SSW on the eastern edge of the greenstone belt flanking Sandstone. Historical drilling on this unit includes high grade intercepts from RAB drilling including 9m @ 10.5g/t Au (DBP0757), 5m @ 65.4g/t Au (DBP0778) and 3m @ 0.81g/t Au (DBP0785) (See WAMEX A56581). Grades appear to be localised where northwest striking camp scale structures intersect and displace stratigraphy.

Aurumin

2 July 2024

Target 2A corresponds to a strong gold and arsenic anomaly at the intersection of interpreted structural features which displace prospective stratigraphy. The faulting potentially creates the opportunity for an area of increased fluid flow through an area of banded iron that may be thickened by faulting and folding locally.

Figure 8. Newly returned Ultrafine Soil results (Au) Showing New Geochemical, Structural and Lithological Targets Over Interpreted Geology (after Standing, J., 2001).

Targets and Planned Work

Drilling will target the Secret South and Target 2A areas. The southern strike extension of the known mineralisation at Secret South has not been closed out by historical drilling. Results from historical RAB drilling at Target 2A show some weak anomalism but are not considered to have adequately tested these targets, but do provide support for the area being mineralised.

Approx 1400m of air core drilling is planned to cover these target areas.

BIRRIGRIN PROJECT

Aurumin's Birrigrin Project is located 70km north of the Sandstone Processing Plant footprint on the Sandstone-Wiluna Road. The Project has 39 mapped shafts dating to the early 1900s with recorded production grades up to 196g/t Au and mineralisation is narrow high-grade quartz lode style system.

Completed Work and Interpretation

Aurumin has completed initial reconnaissance field work and surface sampling. The gold-bearing veins at Birrigrin are mostly at or near the contact between granite and greenstones and this contact zone appears to be a fundamental control upon the location of the gold-bearing veins. Spatial and geochemical evidence points to a relationship between mineralisation and granite contacts and the granite-greenstone contact being the primary control on the localisation of gold bearing veins.

Targets and Planned Work

Aurumin has planned drilling to target the high-grade quartz lode style mineralisation around historical workings, as well as testing a prospective corridor for blind and substantially preserved systems. Although the historical UG workings are evident, the prospects contnue to represent open pit targets due to their reletivley shallow nature (Figure 10).

850m of RC drilling is planned.

Tassies Mine

Drilling by previous operators identified mineralised veining in the Tassies prospect (3m @ 3.29g/t Au in GSRC0005 and 3m @ 3.41g/t Au in GSRC0047; Westar Resources (WSR), ASX Release 07/10/2021) and Aurumin's drilling will test the continuation along-strike of the Tassies vein. Mapped quartz blows along strike suggest a relatively extensive vein. Drilling is planned to test the trend of this target and aims to identify shallow high-grade quartz hosted mineralisation over a strike of 200m to a depth of 60 metres below surface.

Pelerin Mine

The Pelerin Mine is responsible for much of the production at Birrigrin, producing 2680t @ 51.9g/t. Pelerin was the most recently accessed mine and is believed to be open at depth with small scale mining in the 80s ending due to technical difficulties. Drilling is planned to test for high-grade mineralisation below and along strike of the historical workings (Figure 9).

Hawthorn Mine and Main Mining Trend

The main mining trend at the Birrigrin mining centre is localised around the Hawthorn Workings characterised by a number of lenticular quartz lodes extending over 300m on a north-northwest trend along the contact between the mafic volcanics and western granite. Reviews of the historical drilling conducted during the 80s by Dalrymple and more recently by Westar suggest the opportunities around the historical workings in the main trend may not have fully tested. Drilling is planned to test several positions in the main mining area.

2 July 2024

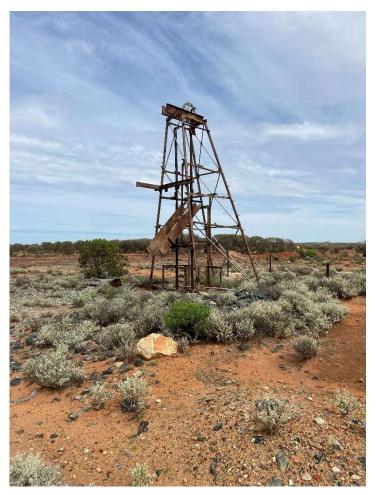


Figure 9. Pelerin Mine, Birrigrin

Birrigrin Mining Centre Exploration

 Λ urumin

The prospective area of the Birrigrin mine camp extends north of the Belfast-Pellerin workings towards the Wheal Ellen workings. Through the target area the granite-greenstone contact is inferred to dip east and has not been exhumed, implying that veins in fractures near the contact may be preserved and allowing for the potential for more substantial preservation of the system under cover. Alteration observed around the existing deposits is tightly constrained visually around the narrow quartz veins. However there has been little systematic geochemistry conducted to understand pathfinder elements dispersion patterns. A geochemical orientation study is planned over existing deposits to evaluate potential of geochemical sampling methods to identify potential blind mineralisation, allowing narrowing of target areas for future reconnaissance drilling. The geochemical orientation study is scheduled for completion in July.

2 July 2024

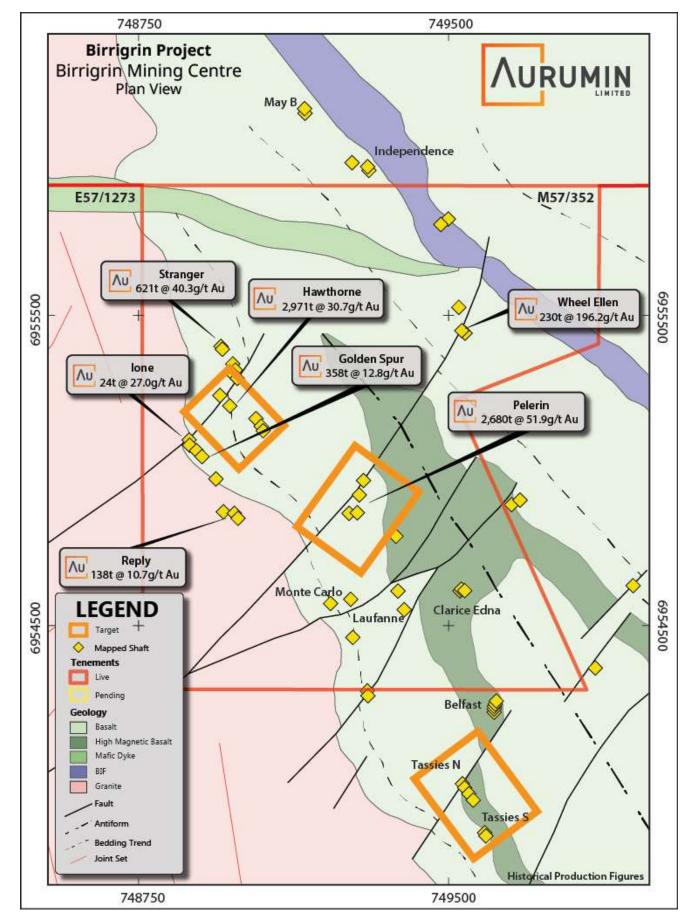


Figure 10. Birrigrin Targets Over Interpreted Geology.

2 July 2024

DANDARAGA PROJECT

The Dandaraga Project is located on Aurumin's exploration tenement E57/1396, approximately 16km from the mining leases and contains numerous historical small scale workings. The geology comprises a north-south trending succession of BIFs, ultramafics, gabbros and dolerites situated in the south-eastern extremity of the Sandstone greenstone belt, immediately adjacent to a lobe of granitoid basement rocks comprising the Diemals Dome. The greenstone stratigraphy within the project appears to be repeated due to isoclinal folding to form a syncline through the central portion of the tenement.

Completed Work and Interpretation

Field work by Aurumin and previous operators has identified areas of gold mineralisation along banded iron formation (BIF) horizons which appear to have limited exploration and were not targeted as part of the historical mining operations. These BIF horizons cover over 3km of strike and have been folded resulting in a target up to 200m wide.

Modern drilling on E57/1396 is limited to shallow holes testing for bulk low-grade mineralising occurring as bulk stockwork in dolerite and did not test the stratigraphic contacts between the mineralised systems and BIF on the flank ridge.

Targets and Planned Work

The principal target is for high grade BIF hosted gold mineralisation, which in the region can be 150-200m long and between 2-15m wide, and can repeat along strike. The banded iron beds that are exposed immediately west of the Agnes dolerite are strongly brecciated, gossanous and quartz veined, with in-situ visible gold occurrences noted at surface.

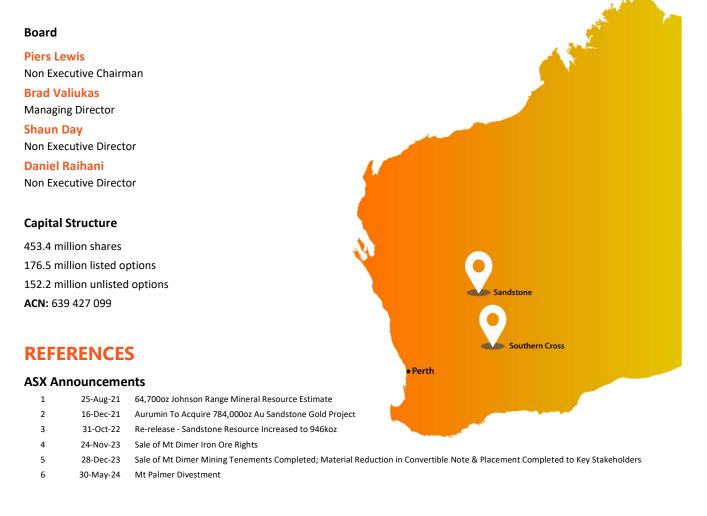
An initial round of exploration drilling, is planned focussing on the eastern margin of the banded iron unit centred around the Agnes vein, stockwork system and banded iron beds near old workings and several gossanous outcrops identified in field mapping. Approximately 8 holes for 800m of RC drilling is expected to be completed.

Figure 11. BIF at Dandaraga

ABOUT AURUMIN

Projects

Aurumin Limited is an ASX-listed mineral exploration Company focused on the Sandstone region in Western Australia.


The **Sandstone Gold Operations** were cornerstone by the acquisition of the **Central Sandstone Gold Project** by the Company in early 2022.

- The **Central Sandstone Gold Project** comprises an **881,300 ounce gold mineral resource**, significant project infrastructure and an expanding tenement footprint where the Company aims to support a gold mining operation in the future.^{2, 3}
- The Company's Johnson Range Project has a Mineral Resource of 64,700 ounces at a grade of 2.51g/t Au, located midway between Southern Cross and Sandstone.¹
- The **Birrigrin Project** area was added in late 2022 and is 70km north of the Central Sandstone Gold Project. The Project has 39 mapped shafts dating to the early 1900s with **recorded production grades up to 196g/t Au**.

In addition to the Sandstone Gold Operations, the Company has a significant landholding at its Southern Cross Operations.

- Mt Dimer regionally has a substantial tenure footprint with gold and iron ore potential. The Company is currently working towards completion of the sale of iron ore rights to MinRes for a combination of upfront and milestone cash payments and a \$1/t royalty.⁴
- The **Mt Dimer Mining Tenements** have been divested to Beacon Minerals Limited. Historically the Mt Dimer Mining Tenements produced over 125,000 ounces of gold from open pit and underground production of approximately 600,000 tonnes @ 6.4g/t. Aurumin retains a 2% net smelter return royalty on gold production above 12,000 ounces and on all other minerals. ⁵
- The Mt Palmer Project historically produced via open pit and underground methods, generating approximately 158,000 ounces of gold at an average grade of 15.9g/t. Aurumin has divested 51% of Mt Palmer to Kula Gold Limited, who can earn up to 80% by spending a\$1M over 3 years.⁶

The Company is actively exploring its tenements and pursuing further acquisitions that complement its existing focus and create additional Shareholder value.

2 July 2024

RELEASE AND CONTACT INFORMATION

Authorisation for release

The Aurumin Board has authorised this announcement for release.

For further information, please contact

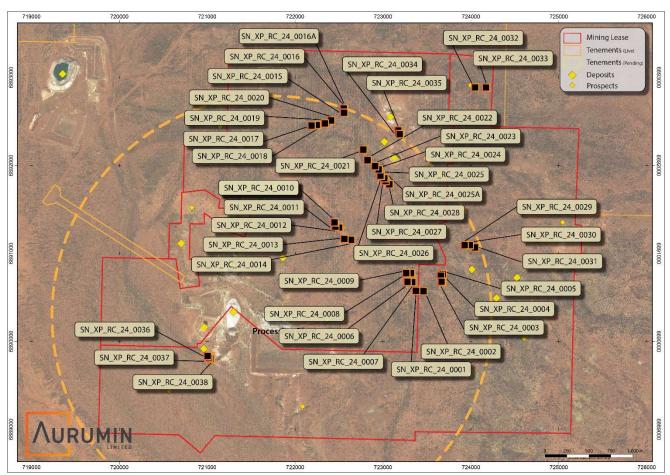
Brad Valiukas

Managing Director				
Phone:	+61 (8) 6555 2950			
Email:	admin@aurumin.com.au			
Website:	www.aurumin.com.au			
Post:	PO Box 446, Subiaco WA 6904			

Subscribe for Announcements

To keep abreast of the Company's latest announcements and developments available to investors please subscribe to our mailing list at https://aurumin.com.au/contact/.

COMPETENT PERSON STATEMENTS


The information in this release that relates to exploration results, data quality, geological interpretations and mineral resources for the Central Sandstone Project were first released in the Company's announcements dated 16 December 2021, 25 March 2022, 28 April 2022, 2 May 2022, 9 June 2022, 21 June 2022, 11 July 2022, 11 August 2022, 26 August 2022, 5 September 2022, 12 September 2022, 6 October 2022, 31 October 2022, 25 November 2022, 30 January 2023, 23 May 23, 17 July 23, 27 November 2023, 3 January 2024, 3 April 2024, 15 April 2024, 22 April 2024 and 28 May 2024. The Company confirms that it is not aware of any new information or data that materially affects the information included in the announcements and confirms that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed, except as updated in this announcement.

The information in this release that relates to exploration results, data quality, geological interpretations and mineral resources for the Birrigrin Project were first released in the Company's announcement dated 24 November 2022. The Company confirms that it is not aware of any new information or data that materially affects the information included in the announcements and confirms that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed, except as updated in this announcement.

The information in this announcement that relates to new exploration results, data quality and geological interpretations for the Sandstone Operations is based on information compiled by Peter Aldridge, a Competent Person who is a Member of the Australian Institute of Geoscientists (AIG) and a full-time employee of Aurumin Limited. Mr Aldridge has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Aldridge consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

2 July 2024

Annexure A - Aurumin April 2024 RC Drilling Collar Location Plan

ASX Announcement

2 July 2024

Annexure B – Drillhole Table

Prospect	Hole #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)
Mt Klempt South	SN_XP_RC_24_0001	723376	6890575	501	-65	271	102	86.0	88.0	2.0	1.14
Mt Klempt South	SN_XP_RC_24_0002	723461	6890571	502	-65	271	102	26.0	28.0	2.0	0.51
							and	38.0	39.0	1.0	0.54
							and	51.0	54.0	3.0	1.26
							and	86.0	87.0	1.0	0.75
							and	88.0	89.0	1.0	0.53
Ridge West	SN_XP_RC_24_0003	723676	6890673	504	-59	256	78	54.0	55.0	1.0	0.82
Ridge West	SN_XP_RC_24_0004	723659	6890746	504	-60	257	78	1.0	2.0	1.0	0.67
							and	71.0	72.0	1.0	0.62
Ridge West	SN_XP_RC_24_0005	723680	6890763	504	-59	246	114	1.0	2.0	1.0	1.53
							and	78.0	80.0	2.0	1.28
							and	85.0	86.0	1.0	1.29
Mt Klempt South	SN_XP_RC_24_0006	723279	6890676	501	-65	269	102	16.0	18.0	2.0	11.02
							and	22.0	23.0	1.0	1.20
							and	34.0	36.0	2.0	1.24
							and	49.0	50.0	1.0	0.63
							and	92.0	94.0	2.0	0.82
Mt Klempt South	SN_XP_RC_24_0007	723333	6890674	502	-65	269	102	44.0	46.0	2.0	3.69
Old Town Trend	SN_XP_RC_24_0010	722448	6891352	504	-66	273	96	30.0	34.0	4.0	0.88
							and	37.0	39.0	2.0	3.44
							and	45.0	47.0	2.0	1.03
Old Town Trend	SN_XP_RC_24_0012	722501	6891294	503	-61	287	96	2.0	3.0	1.0	0.52
Old Town Trend	SN_XP_RC_24_0013	722561	6891163	502	-71	279	72	1.0	2.0	1.0	0.48
				•••			and	42.0	43.0	1.0	1.97
Two Mile Hill West	SN_XP_RC_24_0015	722557	6892599	518	-59	180	78	2.0	4.0	2.0	0.69
Two Mile Hill West	SN_XP_RC_24_0016A	722558	6892644	518	-59	179	78	19.0	20.0	1.0	0.63
Two while this west	511_71 _112_24_001071	TEESSO	0052011	510			and	35.0	36.0	1.0	0.62
Two Mile Hill West	SN_XP_RC_24_0017	722188	6892452	514	-58	271	114	108.0	109.0	1.0	0.55
Two Mile Hill West	SN_XP_RC_24_0018	722248	6892459	514	-60	274	114	71.0	72.0	1.0	3.87
Two whe this west	3N_XF_KC_24_0010	722240	0092439	514	-00	214	and	77.0	80.0	3.0	2.19
							and	85.0	87.0	2.0	0.71
								89.0			0.68
Chillington DM DV		722020	6001000	E10	<u>()</u>	200	and		95.0	6.0	
Shillington FW BIF	SN_XP_RC_24_0027	723029	6891822	510	-60	268	138	8.0	11.0	3.0	1.04
Chilling in		700101	60000556	545		2.12	and	68.0	72.0	4.0	0.58
Shillington	SN_XP_RC_24_0034	723191	6892356	515	-63	243	180	126.0	127.0	1.0	1.06
							and	144.0	150.0	6.0	1.22
							including	146.0	148.0	2.0	2.42
Shillington	SN_XP_RC_24_0035	723174	6892397	516	-64	243	174	93.0	94.0	1.0	0.70
							and	150.0	151.0	1.0	0.50
Plum Pudding	SN_XP_RC_24_0036	721004	6889833	492	-60	270	102	30.0	48.0	18.0	25.80*
							including	33.0	35.0	2.0	3.84

2 July 2024

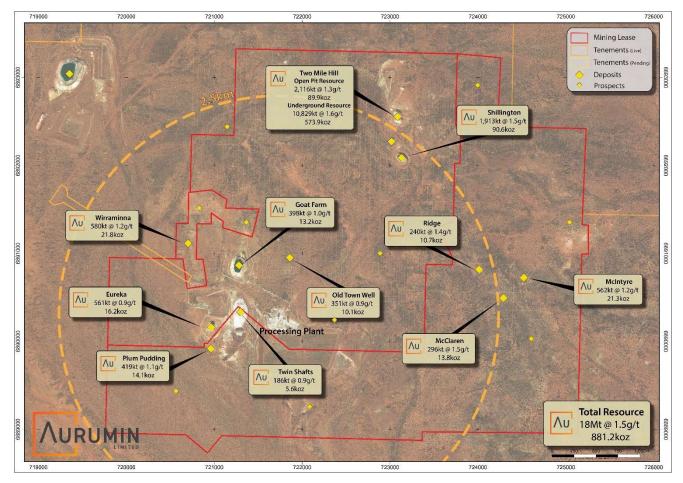
Prospect	Hole #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)
							and	38.0	48.0	10.0	45.17
							including	43.0	47.0	4.0	110.72
							including	43.0	45.0	2.0	215.20
							including	43.0	44.0	1.0	344.00
							and	53.0	55.0	2.0	0.56
							and	71.0	78.0	7.0	1.48
							and	71.0	78.0	7.0	1.48
Plum Pudding	SN_XP_RC_24_0037	721021	6889815	492	-59	272	60	43.0	47.0	4.0	1.62

Previously reported holes with no significant assay not re-reported.

*Including 2m unexpected void @ 0.0g/t

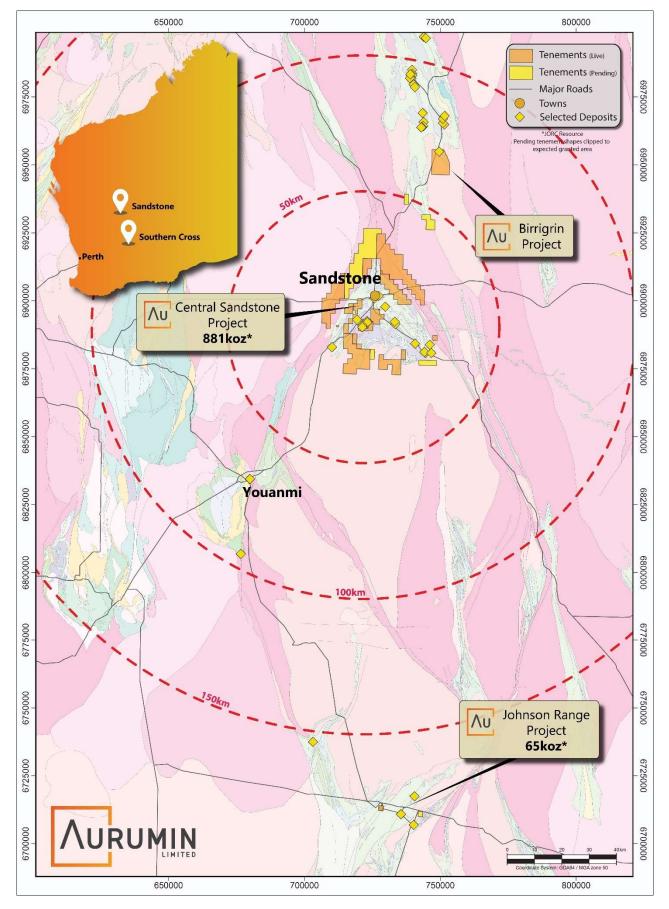
2 July 2024

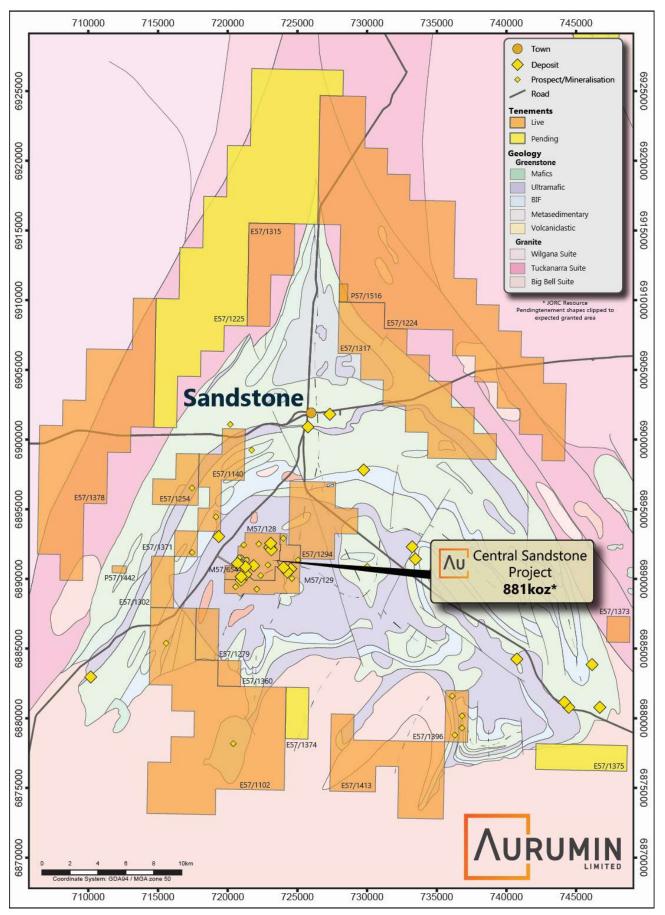
Annexure C – Mineral Resource Table¹²³

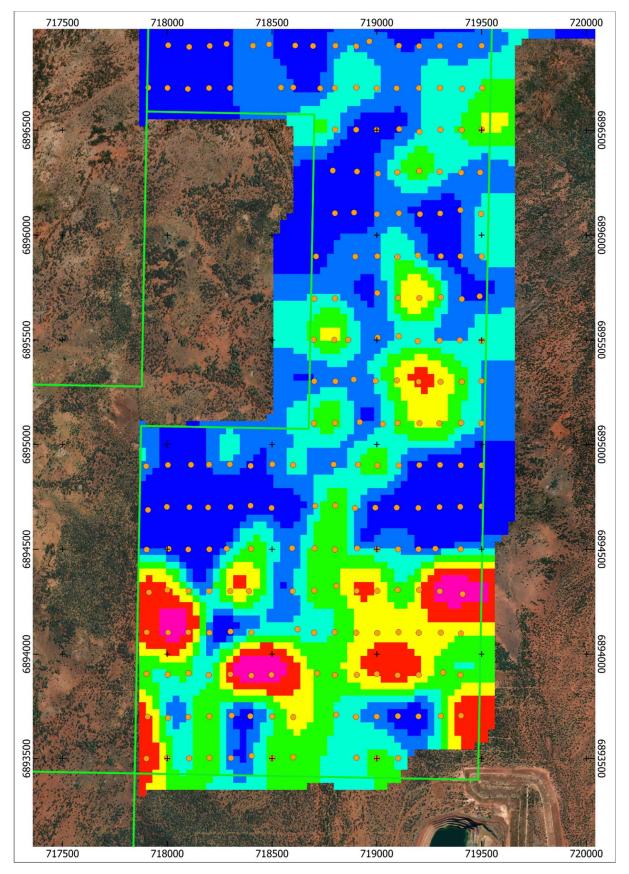

	Sandstone Operations Resources									
	Reported		Indicated			Inferred			Total	
Deposit	to Depth Below	Tonnes	Grade	Au	Tonnes	Grade	Au	Tonnes	Grade	Au
	Surface	(kt)	(g/t Au)	(oz)	(kt)	(g/t Au)	(oz)	(kt)	(g/t Au)	(oz)
Central S	andstone Op	en Pit Depo	sits – Summ	ary Minera	I Resource	Estimates (2	2012 JORC C	ode) at 0.5	g/t cut-off*	
Two Mile Hill	150m	1738	1.3	71,700	378	1.5	18,200	2116	1.3	89,900
Shillington	140m	1300	1.5	60,800	613	1.5	29,800	1913	1.5	90,600
Wirraminna	120m	300	1.3	12,100	280	1.1	9,700	580	1.2	21,800
Old Town Well	90m	282	1.0	8,800	68	0.6	1,400	351	0.9	10,100
Plum Pudding	70m	384	1.1	13,100	35	0.9	1,000	419	1.1	14,100
Eureka	85m	340	0.9	9,700	221	0.9	6,500	561	0.9	16,200
Twin Shafts	95m	149	1.0	4,700	37	0.7	900	186	0.9	5,600
Goat Farm	120m				398	1.0	13,200	398	1.0	13,200
McIntyre	60m	496	1.2	19,400	67	0.9	1,900	562	1.2	21,300
Ridge	75m	173	1.2	6,700	67	1.9	4,000	240	1.4	10,700
McClaren	80m	236	1.4	10,600	60	1.7	3,200	296	1.5	13,800
Sandstone Open Pit Subtotal		5,398	1.3	217,600	2,223	1.3	89,800	7622	1.3	307,400
Central San	dstone Under	ground Dep	osits – Sum	mary Mine	ral Resource	e Estimates	(2012 JORC	Code) at 0.	73g/t cut-o	ff*
Two Mile Hill Underground – Tonalite	from 150m to 560m				10,676	1.6	554,100	10,676	1.6	554,100
Two Mile Hill Underground – BIF	NA	48	6.8	10,400	105	2.8	9,400	153	2.8	19,800
Sandstone Underground Subtotal		48	6.8	10,400	10,782	1.6	563,500	10,829	1.6	573,900
Johnso	on Range Ope	n Pit Depos	its – Summa	ary Mineral	Resource E	stimates (20	012 JORC Co	de) at 1.0g	/t cut-off	
Gwendolyn	100m				803	2.51	64,700	803	2.51	64,700
Sandstone Operations Total		5,446	1.3	228,000	13,808	1.6	718,100	19,254	1.5	946,000

*Data has been rounded to the nearest 1,000 tonnes, 0.1g/t and 100 ounces. Rounding variations may occur.

^Data has been rounded to the nearest 1,000 tonnes, 0.01g/t and 100 ounces. Rounding variations may occur.







Annexure H – JORC Tables

Central Sandstone Project RC Drilling

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg' reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation (RC) drilling samples were collected as 1m intervals and 4m composites. The 1m samples were collected from a cone splitter via the cyclone directly into pre-numbered calico bags, creating a nominal 2.5kg sample. Samples were also placed on the ground in sequence at 1m intervals and used for geological logging and for composite sampling. The 4m composite samples were collected from the 1m sample interval sample piles using a PVC spear to create a sample of approximately 1.5-3.5kg. The composite samples were collected to provide assay coverage over an entire hole length and to help identify mineralised zones where the original 1m samples were not selected to be submitted for analysis. Samples were submitted to ALS Laboratories for drying and pulverising to produce a nominal 50g charge for gold by fire assay analysis. No new composite samples are reported as part of the current results set
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC Drilling using SCHRAMM T685 mounted on an 8x4 Mercedes truck with onboard Sullair 20/12H (1350/500) air and supported by 2500cfm at 350psi - output 1000psi booster. Drilling was conducted using a 5¼ inch face sampling hammer. RC holes were surveyed downhole using an Axis Champ Gyro north seeking survey tool at 30m intervals.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the	 Recovery of drill cutting material was monitored via sample bag and reject pile size. RC recovery data was estimated and recorded in digital geological logs. In most instances recoveries were considered adequate. Where recovery was poor, this was recorded in the logs and noted when assay results

2 July 2024

Criteria	JORC Code explanation	Commentary
	<i>samples.</i> Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 were reviewed. The cyclone was regularly checked and cleaned. Based on the sampling method and sample weight no bias in the 1m sampling process has been identified. There is no known relationship between recovery and grade in sampling.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 All RC drilling was geologically logged by a qualified geologist at the time of drilling. Logging included, where practicable, but not is limited to lithology, alteration, mineralogy, vein quantification and description. Logging was qualitative in nature. All holes are geologically logged in full. Geotechnical logging has not been carried out.
Sub- sampling techniques and sample preparatio n	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 The 1m samples were collected from a cone splitter via the cyclone directly into pre-numbered calico bags, creating a nominal 2.5kg sample. All samples were submitted to ALS laboratories in Perth. Most samples were dry with some moisture present at depth in some holes. Field Duplicate samples were taken as per Aurumin's QAQC sample procedure at a rate of 1:20. Sample preparation for drill samples involved drying the whole sample before crushing and pulverising it to 85% passing 75 microns. A 50g sub-sample charge was then used for gold analysis by fire assay. Samples where raw sample weight is greater than 3kg are fine crushed to 70% passing 2mm, then split using a Boyd Rotary Splitter to produce a 3kg sample which is then pulverised to 85% passing 75 microns. QAQC samples were inserted in the field as per Aurumin's QAQC sample procedure. Sample sizes are considered appropriate for the grain size of material sample.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation,	 A 50g sample was used to analyse gold by fire assay. The fire assay analysis undertaken is considered to be a total analysis method. A fire assay fusion-gravimetric analysis is used for gold analysis in samples that return a greater than 100ppm results using the standard fire analysis technique. Aurumin QAQC procedures collect field duplicates and insert certified reference materials (CRMs). Standards were inserted at a rate of 1:20 while blanks were inserted at 1:50. Duplicate samples are taken every 1:20.

ASX:AUN

|--|

Criteria	JORC Code explanation	Commentary
	<i>etc.</i> <i>Nature of quality control</i> <i>procedures adopted (eg standards,</i> <i>blanks, duplicates, external</i> <i>laboratory checks) and whether</i> <i>acceptable levels of accuracy (ie</i> <i>lack of bias) and precision have</i> <i>been established.</i>	 Laboratory CRMs and repeats have been received and used to assess acceptable levels of laboratory reproducibility and accuracy. Results were reviewed and inline with acceptable variances. No analytical bias was observed. The assaying techniques and quality control protocols used are considered appropriate for the material tested
	been established.	and for the data to be used for reporting exploration drilling results.No geophysical tools were used in determining element
Verificatio	<i>The verification of significant intersections by either independent</i>	 No independent verification of results has been conducted.
n of sampling and	or alternative company personnel. The use of twinned holes. Documentation of primary data,	 All sampling and assay data are stored in a secure database with restricted access.
assaying	data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Twinned holes are not considered necessary at this stage. Field data were collected digitally into Excel spreadsheets at the time of logging. Logging data was validated by geological staff and then imported into the central Aurumin database.
		 All data is stored by geological data management consultancy Expedio and backed up to a cloud-based storage system.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used.	 Drill collars were located using a GPS by Aurumin staff. A Differential GPS will be used to finalise hole locations. The grid system used is GDA94/MGA94 Zone 50. The difference between magnetic north (MN) and true north (TN) is 0.53°. The difference between TN and GDA is 1.07°.
	Quality and adequacy of topographic control.	
Data spacing and distributio n	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Drill holes were spaced variably to allow for best drilling of the target areas. Data density is appropriately indicated in the presentation with all sample positions shown in the plans provided. No new Resources or Ore Reserve estimations are presented.
<i>Orientation of data in relation to geological structure</i>	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised	 Drilling is designed to be orthogonal strike and dip of the interpreted controlling structure or vein or the primary plunge of the ore zones. Drill holes are angled to 270° (West) at Plum Pudding and Mt Klempt South, which is approximately perpendicular to the orientation of the expected trend of mineralisation. At Two Mile West holes are angled to 270° (West) which

2 July 2024

._...

|--|--|

Criteria	JORC Code explanation	Commentary
	<i>structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i>	is perpendicular to the interpreted primary structural control but drills across the north dipping host stratigraphy. At Old Town Trend drilling is oriented 270- 285° which is approximately perpendicular to the targeted BIF stratigraphy but oblique to any discreet WNW structural features that may be present. Holes at Ridge West are drilled between 245-255° approximately perpendicular to the interpreted mineralisation. At Shillington and Shillington Footwall drilling is oriented 243-270° which is approximately perpendicular to the targeted BIF stratigraphy.
		• At Plum Pudding mineralisation is believed to be hosted in north-northwest striking quartz stockwork structurers. There is a strong lateral, east-northeast plunging component to modelled mineralised shapes. Drilling has been oriented perpendicular to the NNW control and approximately orthogonal to the mineralised models.
		• No sampling bias from the orientation of the drilling is believed to exist. The orientation of the vein zone intercepted in SN_XP_RC_24_0010 at the Old Town Trend target is uncertain and currently bias cannot be discounted with the current level of drilling information available.
		Assay results are reported as downhole widths.
Sample security	<i>The measures taken to ensure sample security.</i>	• All samples were collected by Aurumin stored onsite in a secure location before being transported to Perth by consignment in sealed bags.
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	• No audits or reviews have been completed to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Central Sandstone project is located on granted tenements M57/128, M57/129 and M57/654. Drilling reported is on M57/128 and M57/129. These tenements are wholly owned by Aurumin. The project is located in the Sandstone Shire, approximately 10 kilometres south of Sandstone. The historical town site of Nungarra is located on M57/128 but does not impede or encroach on any known resources. No impediments are known at the time of reporting.

|--|

Criteria	JORC Code explanation	Commentary
Exploration done by	Acknowledgment and appraisal of exploration by other parties.	• Gold exploration in the Sandstone area has occurred since the late 1800s.
other parties		 Modern production commenced in 1993 from laterite material. Subsequently, in 1994, Herald constructed a CIF processing plant and began open pit mining.
		• Mining continued at various deposits until 2010.
		 Middle Island Resources acquired the project in 2016 and completed substantial exploration drilling, resource drilling and mining pre-feasibility work.
		• Aurumin acquired the project in 2022 and has started exploration.
Geology	Deposit type, geological setting and style of mineralisation.	• Shear-zones hosted within greenschist facies ultramafic and mafic rocks with meso-thermal quartz veining and associated silica-carbonate-chlorite-pyrite alteration within the Archaean Sandstone greenstone belt.
		• Plum Pudding mineralisation occurs as a sub-vertical zone of stockwork quartz veining within sheared ultramafic rocks. The alteration zone, which generally marks the zone of mineralisation, strikes north northwes with a near vertical dip. The actual orientation of the quartz veins and mineralised lodes within the alteration zone is highly variable. In detail mineralisation may have steep component but the high-grade nature of some of the deposit is partly due to supergene enrichment in a sub-horizontal zone from approximately 20 to 50m vertical depth.
		• The Shillington, Shillington Footwall and Two Mile West deposit/target styles are primarily described as banded iron hosted gold deposits/targets. Mineralisation is associated with zones of brecciation and quartz veining within a series of stacked, west to northwest trending ar shallow North to northeast dipping BIF.
Drill hole Information	A summary of all information material to the understanding of	• A drill hole information summary for drilling associated with the announcement is available in Annexures.
	the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly	Further information regarding the drill programme can be found in ASX release dated 28/05/2024

2 July 2024

Criteria	JORC Code explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Lithology is aggregated based on the primary lithological unit logged. Reported mineralised intervals are reported as downhole weighted averages. No grade truncations or lower cutoffs are used. Where available, duplicates and/or repeats are used to calculate the average grade for a sample point. Reported mineralised intervals are 1m samples. No 4m composite samples are used in results released as part of this announcement. No top-cut has been applied to assays when compiling composites.
Relationship between mineralisatio n widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 Drill holes are designed to be perpendicular to the interpreted primary mineralised controls. Drill holes are angled to 270° at Plum Pudding, Two Mile West and Mt Klempt South. At Old Town Trend holes are angled between 270° to 285° and at Ridge West holes are drilled towards 245° to 255°. At Shillington and Shillington Footwall holes are angled at 243°-270°. Only the down hole lengths are reported. No estimation of true width of mineralisation has been completed at this stage.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Refer to figures in body for spatial context of the drilling. A plan view and sectional view is provided. Significant results are tabulated in the annexures.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All relevant data to targets is discussed and included on plans, sections and tables.
<i>Other substantive exploration data</i>	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk	 No other information is considered material for this presentation.

Criteria	JORC Code explanation	Commentary
	<i>density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i>	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	• Further assessment of results and follow up drilling.

E57/1140 Surface Sampling

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg' reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information 	 A programme of Ultra-Fine Fraction Soil Sampling (UF) has been conducted. UF soil sampling method was developed by the CSIRO. UF soil sampling is used to obtain an ultra-fine fraction of the soil (-2µm), this is analysed to identify elemental concentrations. Soil samples are collected to produce a nominal 200g field sample, this sample is processed using the CSIRO UF workflow to produce an ultra-fine fraction to analyse for Au & multi-elements. Sampling was completed on a 200m north-south by 100m east-west grid. The grids being employed are reconnaissance in nature and appropriate as a first pass assessment tool for gold mineralisation. Soil samples were collected from a nominal depth of 25cm; an area of approximately 1m by 1m was scraped to remove surface crust, lag, and vegetation and then a small pit of approximately 30cm to 40cm was dug in the centre. A scoop was used to collect sample to be sieved using a -2mm mesh plastic sieve to produce a sample of approximately 200g. These were placed in prenumbered paper sample bags. Sampling was conducted by Aurumin geological staff. The sampling practice is appropriate to the generally residual soil profile of the area sampled and complies with industry best practice.
Drilling techniques	information. Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	Not applicable for soil sampling.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure	Not applicable for soil sampling.

2 July 2024

Criteria	JORC Code explanation	Commentary
	representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Samples were geologically logged by geological staff at the time of collection and sample material type and terrain were recorded
Sub- sampling techniques and sample preparatio n	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 Soil samples were collected in dry conditions and placed in numbered paper bags before being placed in cartons for transport to the laboratory. Samples were transported by Aurumin personnel to Labwest's laboratory in Perth for Ultrafine analysis. Sample sizes and material being submitted to Labwest are appropriate in size for the analysis being conducted. QAQC samples were collected in the field as per Aurumin's QAQC sample procedure.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations	 Ultrafine analysis (Lab code: UFF-PE) comprising the collection of <2 µm fraction, microwave digestion in Aqua Regia and analysis of Au + multi-element data is acquired. The lab procedures for sample preparation, digestion and analysis are considered industry standard. In-Lab QA/QC procedures include insertion of standards, blanks and duplicates, sizing checks and repeat analyses are standard procedure.

2 July 2024

|--|

Criteria	JORC Code explanation	Commentary
·	factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Microwave Aqua Regia analysis technique for gold is considered partial. The analytical quality control procedures consisted of the inclusion of a Certified Reference Material (CRM) at a rate of 1:20. The CRMs used were OREAS45f and OREAS 25a with the results showing consistency throughout the sampling programme. QC data from sample analysis indicate acceptable level of accuracy and precision with the data. The assaying techniques and quality control protocols used are considered appropriate for the data to be used for reporting exploration soil geochemistry results.
<i>Verificatio n of sampling and assaying</i>	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 No independent verification of results has been conducted. All samples and data were stored in Excel spreadsheets with restricted access. Digital sample submission forms provided the sample identification numbers accompanying each submission to the laboratory. Assay data is not adjusted
<i>Location of data points</i>	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Samples were located using a handheld GPS with an accuracy of ± 3m. The grid system used is GDA94/MGA94 Zone 50. RL data was assigned using publicly available SRTM elevation data.
Data spacing and distributio n	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Samples were collected on an east-west grid of 100m by 200m. Data density is appropriately indicated in the presentation with all sample positions shown in the plans provided. No sample composites. No Resources or Ore Reserve estimations are presented.
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known,	 Sampling is reconnaissance in nature and is not considered to introduce sampling bias. Sample spacing is broad to identify potential gold and

ASX:AUN

2 July 2024

Criteria	JORC Code explanation	Commentary
geological structure	considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 / or pathfinder elements that may indicate potentially underlying structurally controlled gold mineralisation. Sample locations were adjusted or sample points excluded where they interested drainage channels or cultural features (such as historical workings, dry blowings etc).
Sample security	<i>The measures taken to ensure sample security.</i>	 All sample collection was supervised by Aurumin and stored onsite in a secure location before being transported to Perth by consignment in sealed boxes.
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	• No audits or reviews have been completed to date

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 UF soil sampling has been conducted at the Sandstone Project on granted E57/1140. This tenement is wholly owned by Aurumin. The project is in the Sandstone Shire, centred approximately 10 kilometres southwest of the Town of Sandstone. No impediments are known at the time of reporting.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Gold exploration in the Sandstone area has occurred since the late 1800s. Modern production commenced in 1993 from laterite material. Subsequently, in 1994, Herald constructed a CIP processing plant and began open pit mining.
		 Mining continued at various deposits until 2010. Historical exploration work over the project area has been completed by several different companies, including Herald Resources and Troy Resources over the years. Work completed includes soil sampling and RAB drilling. Reports detailing work and results are available in the public domain through WAMEX.
Geology	• Deposit type, geological setting and style of mineralisation.	• Gold mineralisation targeted in this review is interpreted to occur as structurally controlled shear or shear hosted features on multiple possible orientations. Mineralisation

ASX:AUN

2 July 2024

Criteria	JORC Code explanation	Commentary
		may be aligned to dominant structural stratigraphic trends and/or intrinsically hosted lithologies for instance Banded Iron Formation (BIF) mineralisation or intrusive bodies.
		• The Sandstone Greenstone Belt ("SSGB") is a triangular shaped Archean greenstone belt located towards the northern end of the Southern Cross Province, the central spine of the Archaean Yilgarn Block. The SSGB sits at the northern end of the Diemals Dome, at the juncture of the Youanmi Fault and Edale Fault, two major trans-cratonic faults which bound the west and east sides of the belt respectively.
		• The southern half and core of the belt, dominated by ultramafic and high magnesian mafic volcanics with numerous interflows of oxide-facies Banded Iron Formation ("BIF"). Along the southern margin of the belt these rocks are in direct contact with the Diemals Dome.
		• The northern part and flanks of the belt, dominated by mafic volcanics and syn-volcanic mafic sills, BIF interflow units are common. Ultramafic volcanics and/or intrusives are rare.
		• Siliciclastic sediments other than BIF are restricted to a small teardrop-shaped basin at the northern apex of the belt. A variety of felsic rocks intrude the greenstones, ranging from granite, granodiorite, to various quartz-eye and feldspar-phyric porphyries.
		• Deposits of the SSGB exhibit strong structural controls indicative of sub-horizontal east-west compression hosted by major shear zones at the intersection of two regional shear zones.
		 High-grade gold mineralisation in SSGB deposits is associated with thin quartz veins, stacked or sheeted quartz vein arrays, or stockworks.
		• Mineralisation is generally 'free' gold within quartz veins, with only refractory ore, hosted by sulfidic shale recorded at Bell Chambers.
		• Gold has been mined from all stratigraphic domains and most lithological units of the SSGB.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar	• Not applicable for soil sampling.
	elevation or RL (Reduced Level – elevation above sea level in	

|--|

Criteria	JORC Code explanation	Commentary
	metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Not applicable for soil sampling. Soil sample results are not cut. Results shown in images as percentiles or grade contours.
Relationship between mineralisatio n widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	• Not applicable for soil sampling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and	 Location plans are included in the release. A sample information summary for data associated with the announcement is available in Annexures

2 July 2024

Criteria	JORC Code explanation	Commentary
	appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All relevant data to targets is discussed and included in plans, sections and tables.
<i>Other substantive exploration data</i>	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No other information is considered material for this presentation.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	• Further analysis, prioritisation and drill planning.

2 July 2024

Annexure I – E57/1140 Ultrafine Soil Results

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0442	718802	6896902	521	0.25	6.2	5.0
Sandstone	SN0443	718695	6896901	516	0.25	4.7	-0.5
Sandstone	SN0444	718610	6896903	516	0.25	6.1	-0.5
Sandstone	SN0445	718486	6896909	514	0.25	4.6	4.0
Sandstone	SN0446	718409	6896902	510	0.25	3.4	5.0
Sandstone	SN0447	718283	6896911	513	0.25	6.0	2.0
Sandstone	SN0448	718202	6896901	512	0.25	6.7	2.0
Sandstone	SN0449	718104	6896897	514	0.25	6.3	3.0
Sandstone	SN0450	718004	6896904	515	0.25	6.4	2.0
Sandstone	SN0451	717909	6896702	515	0.25	5.7	-0.5
Sandstone	SN0452	718001	6896701	523	0.25	5.6	3.0
Sandstone	SN0453	718098	6896696	519	0.25	6.6	1.0
Sandstone	SN0454	718199	6896700	516	0.25	7.2	1.0
Sandstone	SN0455	718299	6896700	514	0.25	5.9	4.0
Sandstone	SN0456	718542	6896703	514	0.25	5.5	5.0
Sandstone	SN0457	718601	6896703	517	0.25	5.1	3.0
Sandstone	SN0458	718730	6896699	516	0.25	5.3	2.0
Sandstone	SN0459	718800	6896701	514	0.25	5.5	5.0
Sandstone	SN0460	718902	6896703	521	0.25	5.0	8.0
Sandstone	SN0461	718999	6896699	520	0.25	4.6	5.0
Sandstone	SN0462	719095	6896699	518	0.25	4.2	5.0
Sandstone	SN0463	719201	6896701	522	0.25	3.7	4.0
Sandstone	SN0464	719301	6896701	524	0.25	4.1	8.0
Sandstone	SN0465	719407	6896696	514	0.25	4.4	3.0
Sandstone	SN0466	719503	6896701	523	0.25	4.6	7.0
Sandstone	SN0467	719500	6896902	516	0.25	4.9	3.0
Sandstone	SN0468	719397	6896903	519	0.25	3.2	4.0
Sandstone	SN0469	719301	6896901	523	0.25	3.3	4.0
Sandstone	SN0470	719202	6896900	520	0.25	3.9	3.0
Sandstone	SN0471	719105	6896902	518	0.25	4.6	3.0
Sandstone	SN0472	718964	6896923	516	0.25	4.5	4.0
Sandstone	SN0473	718902	6896899	518	0.25	2.9	4.0
Sandstone	SN0559	719500	6896503	523	0.25	2.9	10.4
Sandstone	SN0560	719405	6896500	525	0.25	4.6	4.9
Sandstone	SN0561	719303	6896502	518	0.25	2.9	7.6
Sandstone	SN0562	719203	6896492	515	0.25	3.8	3.5
Sandstone	SN0563	719106	6896505	515	0.25	3.4	2.7
Sandstone	SN0564	718999	6896502	514	0.25	3.7	2.7
Sandstone	SN0565	718901	6896502	516	0.25	5.5	1.3
Sandstone	SN0566	718801	6896503	524	0.25	2.7	8.0
Sandstone	SN0567	718790	6896308	514	0.25	5.5	2.4

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0568	718905	6896303	514	0.25	3.1	1.2
Sandstone	SN0569	719005	6896292	516	0.25	2.5	5.0
Sandstone	SN0570	719097	6896299	518	0.25	4.9	4.2
Sandstone	SN0571	719202	6896306	519	0.25	3.3	11.9
Sandstone	SN0572	719300	6896302	521	0.25	4.7	4.0
Sandstone	SN0573	719402	6896298	524	0.25	7.3	6.4
Sandstone	SN0574	719493	6896299	521	0.25	5.4	2.8
Sandstone	SN0575	719498	6896101	521	0.25	4.1	5.8
Sandstone	SN0576	719399	6896119	519	0.25	5.6	1.5
Sandstone	SN0577	719302	6896103	523	0.25	5.5	3.5
Sandstone	SN0578	719206	6896100	523	0.25	4.7	2.0
Sandstone	SN0579	719105	6896104	526	0.25	5.3	4.4
Sandstone	SN0580	719000	6896100	523	0.25	4.6	3.3
Sandstone	SN0581	718891	6896107	518	0.25	4.8	1.5
Sandstone	SN0582	718800	6896104	516	0.25	3.2	2.1
Sandstone	SN0583	718710	6895899	512	0.25	5.4	1.8
Sandstone	SN0584	718897	6895898	513	0.25	4.0	5.6
Sandstone	SN0585	719002	6895900	511	0.25	5.5	1.7
Sandstone	SN0586	719098	6895896	519	0.25	4.0	8.0
Sandstone	SN0587	719196	6895904	517	0.25	3.0	3.7
Sandstone	SN0588	719305	6895900	514	0.25	6.5	2.9
Sandstone	SN0589	719399	6895899	516	0.25	6.2	2.0
Sandstone	SN0590	719500	6895898	520	0.25	6.3	6.2
Sandstone	SN0591	719491	6895709	520	0.25	3.0	3.0
Sandstone	SN0592	719405	6895696	525	0.25	5.0	3.1
Sandstone	SN0593	719305	6895704	521	0.25	3.9	5.5
Sandstone	SN0594	719203	6895700	514	0.25	4.2	17.9
Sandstone	SN0595	719101	6895701	514	0.25	4.1	5.8
Sandstone	SN0596	719002	6895725	507	0.25	5.1	2.4
Sandstone	SN0597	718800	6895698	506	0.25	4.7	4.8
Sandstone	SN0598	718701	6895697	515	0.25	6.4	4.7
Sandstone	SN0599	718698	6895502	515	0.25	9.7	5.7
Sandstone	SN0600	718797	6895501	517	0.25	3.6	14.0
Sandstone	SN0600	718863	6895502	509	0.25	6.7	5.4
Sandstone	SN0601	719004	6895512	509	0.25	5.7	3.0
Sandstone	SN0602	719104	6895518	511	0.25	6.6	4.8
Sandstone	SN0603	719104	6895495	516	0.25	3.5	4.6
Sandstone	SN0605	719299	6895498	513	0.25	5.3	4.5
Sandstone	SN0605	719299	6895500	515	0.25	6.1	2.0
Sandstone	SN0606	719396	6895496	516	0.25	5.5	7.2
		719500					
Sandstone	SN0608		6895303	518	0.25	5.4	3.4
Sandstone	SN0609	719405	6895299	523	0.25	2.9	9.6
Sandstone	SN0610	719304	6895299	525	0.25	5.3	10.6

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0611	719200	6895299	516	0.25	5.4	14.4
Sandstone	SN0612	719095	6895306	511	0.25	5.9	9.1
Sandstone	SN0613	718994	6895303	509	0.25	4.9	3.4
Sandstone	SN0614	718890	6895310	509	0.25	5.6	4.5
Sandstone	SN0615	718802	6895301	509	0.25	5.7	2.6
Sandstone	SN0616	718701	6895302	511	0.25	12.7	3.1
Sandstone	SN0617	718699	6895100	509	0.25	4.0	5.3
Sandstone	SN0618	718801	6895103	509	0.25	3.6	11.0
Sandstone	SN0619	718918	6895107	509	0.25	7.6	1.4
Sandstone	SN0620	719029	6895097	508	0.25	6.5	3.2
Sandstone	SN0621	719099	6895102	513	0.25	6.6	7.1
Sandstone	SN0622	719203	6895101	515	0.25	9.3	10.6
Sandstone	SN0623	719298	6895101	516	0.25	6.9	11.9
Sandstone	SN0624	719402	6895103	510	0.25	7.8	6.2
Sandstone	SN0625	719499	6895101	507	0.25	4.3	4.7
Sandstone	SN0626	719499	6894900	498	0.25	8.3	2.0
Sandstone	SN0627	719400	6894901	503	0.25	8.5	2.8
Sandstone	SN0628	719301	6894902	502	0.25	10.9	2.6
Sandstone	SN0629	719202	6894901	504	0.25	11.4	2.6
Sandstone	SN0630	719105	6894900	505	0.25	7.2	3.8
Sandstone	SN0631	719003	6894900	507	0.25	3.8	11.2
Sandstone	SN0632	718910	6894903	507	0.25	5.3	5.2
Sandstone	SN0633	718794	6894905	505	0.25	4.8	3.3
Sandstone	SN0634	718600	6894902	504	0.25	4.9	5.9
Sandstone	SN0635	718501	6894905	504	0.25	4.8	3.4
Sandstone	SN0636	718398	6894898	504	0.25	4.5	2.7
Sandstone	SN0637	718299	6894905	507	0.25	4.2	6.6
Sandstone	SN0638	718199	6894904	505	0.25	6.2	1.9
Sandstone	SN0639	718113	6894903	503	0.25	5.2	2.2
Sandstone	SN0640	718003	6894902	507	0.25	5.2	1.8
Sandstone	SN0641	717899	6894897	509	0.25	3.3	7.6
Sandstone	SN0642	717908	6894688	509	0.25	5.2	0.9
Sandstone	SN0643	717998	6894702	506	0.25	5.3	1.2
Sandstone	SN0644	718105	6894701	509	0.25	6.4	1.2
Sandstone	SN0645	718195	6894700	506	0.25	5.4	-0.5
Sandstone	SN0646	718302	6894702	503	0.25	6.3	-0.5
Sandstone	SN0647	718397	6894708	500	0.25	7.4	2.2
Sandstone	SN0648	718498	6894697	500	0.25	5.6	2.3
Sandstone	SN0649	718706	6894706	505	0.25	5.6	2.3
Sandstone	SN0649	718706	6894706	505	0.25	5.0 4.9	10.1
	SN0650	718896	6894696	508	0.25	4.9	6.6
Sandstone							
Sandstone	SN0652	718993	6894699	510	0.25	7.0	1.7

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0654	719198	6894697	508	0.25	6.6	2.5
Sandstone	SN0655	719299	6894701	509	0.25	9.4	1.2
Sandstone	SN0656	719398	6894703	510	0.25	8.2	-0.5
Sandstone	SN0657	719499	6894705	500	0.25	9.0	0.6
Sandstone	SN0658	719400	6894501	499	0.25	9.5	3.2
Sandstone	SN0659	719279	6894503	497	0.25	5.9	1.7
Sandstone	SN0660	719199	6894500	500	0.25	6.7	2.1
Sandstone	SN0661	719101	6894501	502	0.25	3.2	6.0
Sandstone	SN0662	719002	6894500	507	0.25	6.4	2.9
Sandstone	SN0663	718906	6894505	504	0.25	5.9	2.5
Sandstone	SN0664	718800	6894498	507	0.25	3.4	12.5
Sandstone	SN0665	718703	6894505	509	0.25	5.4	5.7
Sandstone	SN0666	718596	6894505	501	0.25	4.4	2.6
Sandstone	SN0667	718400	6894502	498	0.25	11.6	9.1
Sandstone	SN0668	718284	6894503	502	0.25	8.2	1.5
Sandstone	SN0669	718200	6894500	503	0.25	8.2	1.2
Sandstone	SN0670	718100	6894499	506	0.25	6.7	1.0
Sandstone	SN0671	718006	6894502	507	0.25	5.1	0.7
Sandstone	SN0672	717902	6894498	519	0.25	3.4	2.5
Sandstone	SN0673	717913	6894295	508	0.25	4.4	11.2
Sandstone	SN0674	718000	6894306	511	0.25	5.6	15.5
Sandstone	SN0675	718101	6894302	512	0.25	9.0	4.1
Sandstone	SN0676	718200	6894300	509	0.25	10.7	1.1
Sandstone	SN0677	718301	6894301	504	0.25	6.3	17.2
Sandstone	SN0678	718390	6894300	504	0.25	7.7	10.8
Sandstone	SN0679	718598	6894300	499	0.25	5.6	1.6
Sandstone	SN0680	718701	6894304	502	0.25	5.9	10.0
Sandstone	SN0681	718807	6894325	511	0.25	6.0	7.4
Sandstone	SN0682	718904	6894301	508	0.25	6.3	10.3
Sandstone	SN0683	719002	6894302	505	0.25	4.5	15.5
Sandstone	SN0684	719099	6894306	507	0.25	5.6	4.7
Sandstone	SN0685	719202	6894306	505	0.25	5.9	7.2
Sandstone	SN0686	719300	6894300	501	0.25	6.7	20.4
Sandstone	SN0687	719409	6894286	500	0.25	8.5	19.9
Sandstone	SN0688	719401	6894099	500	0.25	5.0	8.9
Sandstone	SN0689	719305	6894103	500	0.25	5.5	12.1
Sandstone	SN0690	719200	6894102	501	0.25	5.1	8.8
Sandstone	SN0691	719104	6894104	501	0.25	5.4	11.3
Sandstone	SN0692	719002	6894101	500	0.25	6.4	9.6
Sandstone	SN0693	718902	6894102	504	0.25	6.1	9.4
Sandstone	SN0694	718798	6894105	499	0.25	5.1	4.5
Sandstone	SN0695	718700	6894103	499	0.25	5.9	7.0
Sandstone	SN0696	718621	6894119	500	0.25	5.1	4.3

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0697	718401	6894103	503	0.25	7.4	4.2
Sandstone	SN0698	718302	6894108	505	0.25	11.2	0.8
Sandstone	SN0699	718201	6894102	502	0.25	6.4	1.8
Sandstone	SN0700	718100	6894105	508	0.25	5.8	25.3
Sandstone	SN0701	718004	6894103	501	0.25	7.3	19.0
Sandstone	SN0702	717902	6894104	501	0.25	4.7	9.9
Sandstone	SN0703	717901	6893906	502	0.25	4.2	6.4
Sandstone	SN0704	718002	6893902	506	0.25	5.4	4.7
Sandstone	SN0705	718101	6893909	508	0.25	4.9	9.9
Sandstone	SN0706	718198	6893900	501	0.25	6.2	3.5
Sandstone	SN0707	718301	6893904	500	0.25	13.2	1.5
Sandstone	SN0708	718401	6893898	505	0.25	12.7	22.9
Sandstone	SN0709	718497	6893901	503	0.25	6.8	21.3
Sandstone	SN0710	718715	6893908	500	0.25	5.8	8.1
Sandstone	SN0711	718800	6893900	500	0.25	6.3	6.1
Sandstone	SN0712	718904	6893901	501	0.25	5.8	10.2
Sandstone	SN0713	719000	6893905	501	0.25	6.6	13.4
Sandstone	SN0714	719099	6893899	501	0.25	7.8	15.9
Sandstone	SN0715	719200	6893901	501	0.25	8.3	13.2
Sandstone	SN0716	719316	6893912	506	0.25	5.1	7.2
Sandstone	SN0717	719398	6893900	499	0.25	5.3	5.7
Sandstone	SN0721	719102	6893501	499	0.25	7.9	43.2
Sandstone	SN0722	719001	6893501	498	0.25	6.8	7.3
Sandstone	SN0723	718903	6893504	499	0.25	6.1	4.9
Sandstone	SN0724	718601	6893506	501	0.25	8.0	8.4
Sandstone	SN0725	718501	6893502	501	0.25	8.0	9.3
Sandstone	SN0726	718403	6893513	507	0.25	8.1	1.9
Sandstone	SN0727	718304	6893502	501	0.25	7.2	3.0
Sandstone	SN0728	718201	6893503	505	0.25	6.5	10.4
Sandstone	SN0729	718104	6893501	505	0.25	5.6	2.8
Sandstone	SN0730	717999	6893503	509	0.25	5.3	8.1
Sandstone	SN0731	717900	6893500	510	0.25	5.8	19.7
Sandstone	SN0732	717906	6893699	509	0.25	4.3	20.8
Sandstone	SN0732	717900	6893694	509	0.25	6.7	20.8
Sandstone	SN0733	718100	6893698	506	0.25	5.5	2.0
Sandstone	SN0734	718100	6893701	508	0.25	5.5	10.0
Sandstone	SN0735	718201	6893701	508	0.25	6.3	2.9
Sandstone	SN0736	718396	6893702	499	0.25	10.4	1.8
Sandstone	SN0738	718501	6893701	504	0.25	7.1	4.0
Sandstone	SN0739	718601	6893698	506	0.25	6.5	10.9
Sandstone	SN0740	718805	6893709	501	0.25	5.5	7.5
Sandstone	SN0741	718900	6893699	504	0.25	5.0	4.6
Sandstone	SN0742	718999	6893700	508	0.25	7.8	3.8

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0743	719100	6893702	505	0.25	6.1	2.2
Sandstone	SN0744	719199	6893701	507	0.25	7.8	2.4
Sandstone	SN0745	719305	6893702	503	0.25	5.1	2.2
Sandstone	SN0746	719402	6893704	502	0.25	4.2	14.9