

ASX:AUN

ABOUT AURUMIN

Aurumin Limited (ACN 639 427 099) is an Australian exploration company with advanced projects.

AURUMIN BOARD

Piers Lewis Non Executive Chairman

Brad Valiukas Managing Director

Shaun Day Non Executive Director

Darren Holden Non Executive Director

CAPITAL STRUCTURE

177.8 million shares29.6 million listed options37.2 million unlisted options

PROJECTS

Sandstone Mt Dimer Mt Palmer Johnson Range Karramindie

CONTACT US

- T: +61 8 6555 2950
- E: admin@aurumin.com.au
- W www.aurumin.com.au
- P: PO Box 446, Subiaco WA 6904

CENTRAL SANDSTONE EXPLORATION UPDATE

ULTRAFINE SOIL SAMPLING RESULTS RETURNED, HIGHLIGHTING MULTIPLE ANOMALOUS GOLD TARGETS

GOLD ANOMALISM CORRELATED WITH REGIONAL AND LOCALISED STRUCTURAL INTERSECTIONS

RESULTS SUPPORT PROSPECTIVITY OF AURUMIN'S SANDSTONE TENEMENT PACKAGE

Aurumin Limited (ASX: AUN) ("Aurumin" or "the Company") is pleased to provide an exploration update for its 100% owned Sandstone Operations. Sandstone Operations has a combined Mineral Resource Estimate (MRE) of 946koz (19.3Mt @ 1.5g/t) Au.

Initial soil sampling results for tenement E57/1140, acquired by Aurumin in June 2022, have been returned. The tenement is hosted within the Sandstone Greenstone Belt, adjacent to the Youanmi shear zone. The tenement has seen relatively little exploration work and remains under-explored.

The Ultrafine (UF) soil geochemistry results identified gold in soil anomalism and has been successful in generating several robust targets with a strike up to 1.4km long on the north-western margin of the Sandstone Greenstone belt.

Additional systematic UF soil sampling northeast of Two Mile Hill, has identified coincident gold and arsenic anomalies corresponding with a felsic intrusive intercepted in historical Rotary Air Blast (RAB) holes. The Two-Mile Hill Deposit is hosted by similar felsic intrusive.

Aurumin's Managing Director, Brad Valiukas, commented:

"We have been maintaining a dual focussed approach since acquiring the Central Sandstone Project, to both upgrade existing resources and identify new resources. Soil sampling is an important step in a region that we believe remains both prospective and under-explored."

"We are pleased with these soil sample results, and it is encouraging to see them aligning with structural and geophysical targets. These new gold anomalies highlight the prospectivity of Aurumin's tenement package for the identification of new resources with follow-up work."

"These results add to the multiple targets that we already have at Sandstone and will be considered for incorporation into the next drill programme."

SOIL SAMPLING E57/1140

A broad-spaced systematic (100m by 200m) UF soil sampling programme comprising 497 samples was completed over the northern portion of the newly acquired tenement, E57/1140, located west of the Sandstone processing plant location (Figure 2). Soil samples from the southern part of the tenement have been collected but have yet to be submitted for analysis, pending a review of results in the current round of analysis.

There is no known drilling on the area of the tenement covered by this survey with the exception of a single line of aircore drilled on a small section of the northern tenement boundary, south of the Golden Raven prospect (Wamex A-107874). A desktop review of historical geochemical and geophysical data presented eight targets before undertaking the programme.

Gold and multi-element results from UF samples were normalised using median values as a proxy 'background' result, with results evaluated relative to these proxy background values. Four of the desktop targets have been confirmed with strongly anomalous gold values and a further two with elevated gold values. New targets have also been generated, including Starling, located at the intersection of two structural trends.

All geochemical targets are early stage and require further investigation and evaluation for potential follow-up work that includes detailed mapping and may encompass infill sampling, geophysical surveys, or drilling. Prospective targets highlighted from the soil survey are presented in Figure 1 and discussed below.

Figure 1 - Gridded UF gold results overlain by the location of sample sites coloured by absolute Au values and regional structural interpretation. Map grid GDA94-Zone 50.

Figure 2 – Greater Sandstone Project with Aurumin Tenements and Applications in the Ballot process. Soil Sampling Areas highlighted.

Starling Prospect

The Starling prospect is centred around an anomaly at >20 times background gold which occurs at the high-angle junction of the east northeast striking contact between ultramafic and mafic units. An interpreted significant west northwest striking structure cross-cuts both lithological units. The geochemical anomaly coincides with a locally demagnetised signature on the geological contact, potentially indicative of alteration. Quartz float was observed locally during sampling.

Swallow Anomaly

The Swallow results form a strong, coherent gold anomaly at four to five times background in a north northeast trend that is observed to extend over a strike of 1.4km and is consistent with regional trends and shears. The anomaly is located on a regional shear within an ultramafic suite on E57/1140. An inferred regional structure hosts the Welcome, Phoenix and Queen of the Range occurrences in the south and Golden Raven prospect to the north.

The strongest UF results in the southern portion of the anomaly coincide with an intersecting splay position occurring at a regional scale inflexion in the greenstone belt lithology from north northwest through east northeast. No known drilling of these geochemical results has been conducted by previous operators.

Local geological observations, including foliation intensity, shearing, faulting, folding, sulphide pitting, and stacked quartz vein arrays, characterise the anomaly.

The highlighted structural position extends south onto tenement E57/1254 to the Welcome, Phoenix and Queen of the Range workings and is currently under application by Aurumin Sandstone Pty Ltd.

Goldfinch Trend

The Goldfinch Trend is a periodic, synchronous, and linear trend comprising five discrete targets ranging from four to five times background. The anomalies occur with an alternating succession of pillow basalt and banded chert. Foliation intensity is observed to intensify and rotate from near perpendicular to subparallel to stratigraphy approaching the banded cherts. The trend is untested by any known drilling.

Kestrel Anomaly

The Kestrel Anomaly is located in the southeast corner of E57/1140 and is characterised by an interpreted east northeast trending shear zone within the mafic-gabbro succession as with the Goldfinch Anomaly. This shear zone also penetrates regional lithological contacts. Anomalism comprises a group of elevated gold values ranging from three to seven times background and extends with weaker gold anomalism moving further east northeast along the shear. Continuation of the shear may intersect the northern part of the Swallow Trend.

Gull Anomaly

The Gull Anomaly is located on the eastern edge of E57/1140, comprising a discrete, five times background, gold anomaly within a potential lithological contact similar to the Goldfinch Trend. The east northeast interpreted structure on which the Gull Anomaly is located also penetrates the mafic-ultramafic contact, which hosts the Starling Anomaly.

HATTON PROSPECT (SOIL SAMPLING M57/129)

The Hatton Prospect is located in the northernmost corner of M57/129, approximately 1km east of Two Mile Hill, in an area with eluvial and alluvial cover. A tighter (50m by 100m) grid comprising 59 samples was completed over the prospect (Figure 2).

Recent rounds of auger sampling have not extended into this area due to vegetation cover preventing access. Results of the UF sampling highlighted strongly coincident gold and arsenic anomalies up to 99.6ppb Au (7 times background 13.6ppb Au) (Figure 3).

Limited RAB drilling was conducted by previous operators targeting a shallow, north dipping banded iron formation (BIF) and felsic intrusive rocks were intercepted at the end of hole in two holes. The potential presence of a blind and untested granitic/granodiorite intrusive associated with coherent and persistent gold anomaly presents a target style and exploration model analogous to the nearby Two Mile Hill deposit (10.8Mt @ 1.6g/t Au for 574koz).

The gold and arsenic anomaly coincides with a target generated from existing radiometric data. It was selected based on the strength of potassium (K) and its identical signature to the exposed Two Mile Hill tonalite. Potassium is a primary component in feldspars, a major rock-forming mineral in felsic intrusive which, when exposed to weathering, forms potassium-bearing clays such as kaolin.

Figure 3 - (left) Gridded Au in soil overlain by sample locations with Au values. (right) Gridded As in soil overlain by sample locations with As values. Map grids GDA94-Zone 50.

ULTRAFINE SOIL SAMPLING BACKGROUND

The CSIRO UF technique was developed for soil particles <2µm, such as clays and iron oxides with more surface area to bind with gold and other metals. These smaller particles can move more readily through the environment and form geochemical signatures of orebodies laying many metres below soil or sand. Compared to conventional soil sampling, the benefits of the UF method involve removing quartz, a bulk component of soil samples that poses challenges with detection limits and reduces the nugget effect with the finer size fraction.

REFERENCES

ASX ANNOUNCEMENTS

1	25-Aug-21	64,700oz Johnson Range Mineral Resource Estimate
2	16-Dec-21	Aurumin To Acquire 784,000oz Au Sandstone Gold Project
3	6-Oct-22	Soil Sampling in progress over new tenement E57/1140
4	31-Oct-22	Re-release - Sandstone Resource Increased to 946koz
6	24-Nov-22	Sandstone Footprint Expanded
7	25-Nov-22	New Sandstone Tenements Applied For

Authorisation for release

The Aurumin Board has authorised this announcement for release.

For further information, please contact

Brad Valiukas

Managing Director T: +61 (8) 6555 2950 E admin@aurumin.com.au W www.aurumin.com.au

Competent Person Statement

The information in this announcement that relates to exploration results, data quality, geological interpretations and mineral resources for the Sandstone Operations (Central and Greater Sandstone Projects and Birrigrin Project) were first released in the Company's announcements 16 December 2021, 25 March 2022, 28 April 2022, 2 May 2022, 9 June 2022, 21 June 2022, 11 July 2022, 11 August 2022, 26 August 2022, 5 September 2022, 12 September 2022, 6 October 2022, 31 October 2022, 24 November and 25 November 2022. The Company confirms that it is not aware of any new information or data that materially affects the information included in the announcements and confirms that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed, except as updated in this announcement.

The information in this announcement that relates to new exploration results, data quality and geological interpretations for the Central Sandstone and Greater Sandstone Projects is based on information compiled by Simon Smith, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy and a full-time employee of Aurumin Limited. Mr Smith has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Smith consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

The information in this announcement that relates to exploration results, data quality, geological interpretations and mineral resources for the Johnson Range Project were first released in the Company's announcement dated 25 August 2021. The Company confirms that it is not aware of any new information or data that materially affects the information included in the announcement and confirms that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

ASX:AUN

About Aurumin Limited

Aurumin Limited is an ASX-listed mineral exploration company focused on two project areas in Western Australia.

The **Sandstone Gold Operations** were cornerstone by the acquisition of the **Central Sandstone Project** by the Company in early 2022.

- The **Central Sandstone Project** comprises an **881,300 ounce gold mineral resource** and significant project infrastructure that the Company aims to use to support a gold mining operation in the future.
- The Company's Johnson Range Project has a Mineral Resource of 64,700 ounces at a grade of 2.51g/t Au, located midway between Southern Cross and Sandstone.

In addition to the Sandstone Gold Operations, the Company has a significant landholding at its **Southern Cross Operations**, including two historical high-grade production centres, Mt Dimer and Mt Palmer.

- The **Mt Dimer Project** produced over 125,000 ounces of gold from open pit and underground production of approximately 600,000 tonnes @ 6.4 g/t, and has a substantial tenure footprint.
- The historical **Mt Palmer Project** produced via open pit and underground methods, generating approximately 158,000 ounces of gold at an average grade of 15.9 g/t.

The Company is actively exploring its tenements and pursuing further acquisitions that complement its existing focus and create additional Shareholder value.

Subscribe for Announcements

To keep abreast of the Company's latest announcements and developments available to investors please subscribe to our mailing list at https://aurumin.com.au/contact/.

Annexure A – Resource Table ⁴

Sandstone Operations Resources									
		Indicate	d		Inferred			Total	
Deposit	Tonnes	Grade	Au	Tonnes	Grade	Au	Tonnes	Grade	Au
	(kt)	(g/t Au)	(oz)	(kt)	(g/t Au)	(oz)	(kt)	(g/t Au)	(oz)
Eandsteine One	n Dit Don	ocito Su	Cen	tral Sandst	one*			+ 0 E a / t au	
								80.000	
	1750	1.5	71,700	570	1.5	10,200	2110	1.5	09,900
Shillington	1300	1.5	60,800	613	1.5	29,800	1913	1.5	90,600
Wirraminna	300	1.3	12,100	280	1.1	9,700	580	1.2	21,800
Old Town Well	282	1.0	8,800	68	0.6	1,400	351	0.9	10,100
Plum Pudding	384	1.1	13,100	35	0.9	1,000	419	1.1	14,100
Eureka	340	0.9	9,700	221	0.9	6,500	561	0.9	16,200
Twin Shafts	149	1.0	4,700	37	0.7	900	186	0.9	5,600
Goat Farm				398	1.0	13,200	398	1.0	13,200
McIntyre	496	1.2	19,400	67	0.9	1,900	562	1.2	21,300
Ridge	173	1.2	6,700	67	1.9	4,000	240	1.4	10,700
McClaren	236	1.4	10,600	60	1.7	3,200	296	1.5	13,800
Open Pit Subtotal	5,398	1.3	217,600	2,223	1.3	89,800	7622	1.3	307,400
Sandstone Underg	ground De	eposits – S	Summary Mi	neral Resou	urce Estim	ates (2012 J	ORC Code)	at 0.73g/1	t cut-off
Two Mile Hill Underground – Tonalite				10,676	1.6	554,100	10,676	1.6	554,100
Two Mile Hill Underground – BIF	48	6.8	10,400	105	2.8	9,400	153	2.8	19,800
Underground Subtotal	48	6.8	10,400	10,782	1.6	563,500	10,829	1.6	573,900
Central Sandstone Total	5,446	1.3	228,000	13,005	1.6	653,300	18,451	1.5	881,300
Johnson Range^									
Johnson Range O	pen Pit D	eposits –	Summary Mi	ineral Reso	urce Estin	nates (2012 J	ORC Code)	at 1.0g/t	cut-off
Gwendolyn				803	2.51	64,700	803	2.51	64,700
Sandstone Operations Total	5,446	1.3	228,000	13,808	1.6	718,100	19,254	1.5	946,000

*Data has been rounded to the nearest 1,000 tonnes, 0.1g/t and 100 ounces. Rounding variations may occur. ^Data has been rounded to the nearest 1,000 tonnes, 0.01g/t and 100 ounces. Rounding variations may occur.

Annexure C – JORC Tables

Sandstone Project Surface Sampling

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	CriteriaJORC Code explanationSampling techniquesNature and quality of sampling (eg cut channels, random chips, or specific specialised industry 	 A programme of Ultra-Fine Fraction Soil Sampling (UF) has been conducted.
		• UF soil sampling method was developed by the CSIRO.
	appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF	 UF soil sampling is used to obtain an ultra-fine fraction of the soil (-2µm), this is analysed to identify elemental concentrations.
	<i>instruments, etc). These examples</i> <i>should not be taken as limiting the</i> <i>broad meaning of sampling.</i> <i>Include reference to measures</i> <i>taken to ensure sample</i> <i>representivity and the appropriate</i>	 Soil samples are collected using a steel shovel, these samples are sieved passing -2mm in the field to produce a nominal 200g field sample, this sample is processed using the CSIRO UF workflow to produce an ultra-fine fraction to analyse for Au & multi-elements.
	representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg' reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	• Phase 1 sampling on E57/1140 was completed on a 200m north-south by 100m east-west grid. Phase 2 sampling at Two Mile Northeast on ML57/129 has been completed on a 50m East-West x 100m North-South grid.
		 Grids spacing and orientations employed vary between areas of interest and are determined based on the orientation of predominant geological features, expected geochemical footprint and existing data density.
		• The grids being employed are reconnaissance in nature and appropriate as a first pass assessment tool for gold mineralisation.
		• Soil samples were collected from a nominal depth of 25cm; an area of approximately 1m by 1m was scraped to remove surface crust, lag, and vegetation and then a small pit of approximately 30cm to 40cm was dug in the centre.
		• A scoop was used to collect sample to be sieved using a -2mm mesh plastic sieve to produce a sample of approximately 200g. These were placed in numbered paper sample bags.
		• Sampling was conducted by Aurumin geological staff.
		• The sampling practice is appropriate to the generally

residual soil profile of the area sampled and complies

with industry best practice.

Criteria	JORC Code explanation	Commentary
		• Sample positions are surveyed using handheld GPS receivers with a nominal horizontal accuracy of 3m.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Not applicable, as no drilling is being reported in this release.
<i>Drill sample recovery</i>	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Not applicable, as no drilling is being reported in this release.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Samples were geologically logged by geological staff at the time of collection in the field using Aurumin's logging template.
<i>Sub- sampling techniques and sample preparation</i>	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	 Soil samples were collected in dry conditions and placed in numbered paper bags before being placed in cartons for transport to Aurumin's Perth office by Aurumin personnel. Samples were transported by Aurumin personnel to Labwest's laboratory in Perth for Ultrafine analysis. Sample sizes and material being submitted to Labwest are appropriate in size for the analysis being conducted. QAQC samples were collected in the field as per Aurumin's QAQC sample procedure. Duplicates were collected at 5:100 samples to assess the variability of the material sampled.

Criteria	JORC Code explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	
<i>Quality of</i> <i>assay data</i> <i>and</i> <i>laboratory</i> <i>tests</i>	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Ultrafine analysis (Lab code: UFF-PE) comprising the collection of <2 µm fraction, microwave digestion in Aqua Regia and analysis of Au + multi-element data is acquired. The lab procedures for sample preparation, digestion and analysis are considered industry standard. In-Lab QA/QC procedures include insertion of standards, blanks and duplicates, sizing checks and repeat analyses are standard procedure. Microwave Aqua Regia analysis technique for gold is considered partial. The analytical quality control procedures consisted of the inclusion of a Certified Reference Material (CRM) at a rate of 1:20. The assaying techniques and quality control protocols used are considered appropriate for the data to be used for reporting exploration soil geochemistry results.
<i>Verification of sampling and assaying</i>	<i>The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.</i>	 No independent verification of results has been conducted. All samples and data were stored in a secure database with restricted access. Digital sample submission forms provided the sample identification numbers accompanying each submission to the laboratory. All data is stored by Expedio and backed up to a cloud-based storage system. Assay data is not adjusted
<i>Location of data points</i>	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Samples were located using a Garmin handheld portable GPS with an accuracy of ± 3m. The grid system used is GDA94/MGA94 Zone 50. RL data was assigned using publicly available SRTM elevation data.

Criteria	JORC Code explanation	Commentary
<i>Data spacing and distribution</i>	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Phase 1 samples on E57/1140 were collected on an eastwest grid of 100m by 200m. Phase 2 samples on M57/129 were collected on an eastwest grid of 50m by 100m. Data density is appropriately indicated in the presentation with all sample positions shown in the plans provided. No sample composites. No Resources or Ore Reserve estimations are presented.
<i>Orientation of data in relation to geological structure</i>	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Gold mineralisation targeted in this review is interpreted to occur as structurally controlled shear or shear hosted features on multiple possible orientations. Mineralisation may be aligned to dominant structural stratigraphic trends and/or intrinsically hosted lithologies for instance Banded Iron Formation (BIF) mineralisation. Sampling is reconnaissance in nature and is not considered to introduce sampling bias.
Sample security	<i>The measures taken to ensure sample security.</i>	• All samples were collected by Aurumin and stored onsite in a secure location before being transported to Perth by consignment in sealed boxes.
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	 The sampling methods being used are industry standard practice. Samples are submitted to LabWest Laboratory in Perth for sample preparation and analysis. The lab is subject to routine and random inspections.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in	 UF soil sampling has been conducted at the Sandstone Project on granted tenements M57/128, M57/129 and E57/1140. These tenements are wholly owned by Aurumin. The project is in the Sandstone Shire, centred approximately 10 kilometres south of the Town of Sandstone. The historical town site of Nungarra is located on M57/128 but does not impede or encroach on any known resources. No impediments are known at the time of reporting.

Criteria	JORC Code explanation	Commentary
	the area.	
<i>Exploration</i> <i>done by</i>	Acknowledgment and appraisal of exploration by other parties.	 Gold exploration in the Sandstone area has occurred since the late 1800s.
other parties		 Modern production commenced in 1993 from laterite material. Subsequently, in 1994, Herald constructed a CIP processing plant and began open pit mining.
		• Mining continued at various deposits until 2010.
		 Middle Island Resources acquired the project in 2016 and completed substantial exploration drilling, resource drilling and mining pre-feasibility work.
		 Aurumin acquired the project in 2022 and has started exploration.
		 Historical exploration work has been completed by several different companies over the years. The reports and results are available in the public domain and all relevant WAMEX reports etc.
Geology	• Deposit type, geological setting and style of mineralisation.	• The Sandstone Greenstone Belt ("SSGB") is a triangular shaped Archean greenstone belt located towards the northern end of the Southern Cross Province, the central spine of the Archaean Yilgarn Block. The SSGB sits at the northern end of the Diemals Dome, at the juncture of the Youanmi Fault and Edale Fault, two major trans-cratonic faults which bound the west and east sides of the belt respectively.
		• The southern half and core of the belt, dominated by ultramafic and high magnesian mafic volcanics with numerous interflows of oxide-facies Banded Iron Formation ("BIF"). Along the southern margin of the belt these rocks are in direct contact with the Diemals Dome.
		 The northern part and flanks of the belt, dominated by mafic volcanics and syn-volcanic mafic sills, BIF interflow units are common. Ultramafic volcanics and/or intrusives are rare.
		 Siliciclastic sediments other than BIF are restricted to a small teardrop-shaped basin at the northern apex of the belt. A variety of felsic rocks intrude the greenstones, ranging from granite, granodiorite, to various quartz-eye and feldspar-phyric porphyries.
		 Deposits of the SSGB exhibit strong structural controls indicative of sub-horizontal east-west compression hosted by major shear zones at the intersection of two regional shear zones.
		 High-grade gold mineralisation in SSGB deposits is associated with thin quartz veins, stacked or sheeted quartz vein arrays, or stockworks.
		Mineralisation is generally 'free' gold within quartz veins,

Criteria	JORC Code explanation	Commentary
		with only refractory ore, hosted by sulfidic shale recorded at Bell Chambers.
		• Gold has been mined from all stratigraphic domains and most lithological units of the SSGB.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly	N/A No drilling is being reported.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	N/A No results are being reported.
<i>Relationship between mineralisatio n widths and</i>	<i>These relationships are particularly important in the reporting of Exploration Results. If the geometry of the</i>	No results are being reported.

Criteria	JORC Code explanation	Commentary
intercept lengths	mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Location plans are included in the release. A sample information summary for data associated with the announcement is available in Annexures
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All relevant data to targets is discussed and included in plans, sections and tables.
<i>Other substantive exploration data</i>	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No other information is considered material for this presentation.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Field validation, including further surface sampling to identify the source of the anomalies. Encouraging results will be analysed, targets prioritised and follow up exploration programmes will be designed to further advance the targets.

Annexure D – Ultra Fine Fraction Soil Results

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0001	719701.95	6900703.99	555	0.25	6.7	37.4
Sandstone	SN0002	719798.79	6900702.19	556	0.25	7.4	17.1
Sandstone	SN0003	719899.29	6900699.49	558	0.25	6.8	10.8
Sandstone	SN0004	719998.81	6900702.92	559	0.25	6.8	6
Sandstone	SN0005	720103.12	6900700.15	560	0.25	6.8	5.8
Sandstone	SN0006	720200.43	6900700.31	560	0.25	7.1	55.3
Sandstone	SN0007	720300.96	6900701.72	561	0.25	6.5	3.6
Sandstone	SN0008	720399.87	6900701.08	562	0.25	4.3	5.8
Sandstone	SN0009	720500.49	6900702.31	560	0.25	2.5	11.5
Sandstone	SN0010	720598.15	6900703.06	561	0.25	4.3	4.2
Sandstone	SN0011	720698.39	6900702.45	560	0.25	6.3	2.3
Sandstone	SN0012	720800.83	6900696.74	557	0.25	3.6	5.4
Sandstone	SN0013	720901.88	6900698.97	555	0.25	2.8	3.1
Sandstone	SN0014	721005.16	6900710.99	554	0.25	5.2	3
Sandstone	SN0015	721099.56	6900700.48	552	0.25	3.3	9.2
Sandstone	SN0016	721196.36	6900709	552	0.25	6.7	3.5
Sandstone	SN0017	721195.61	6900519.97	549	0.25	6.4	2.7
Sandstone	SN0018	721100.69	6900500.68	549	0.25	5.1	2
Sandstone	SN0019	720999.06	6900503.53	550	0.25	4.2	3.2
Sandstone	SN0020	720899.05	6900496.96	553	0.25	5.1	6.7
Sandstone	SN0021	720798.89	6900501.4	553	0.25	6.8	5.2
Sandstone	SN0022	720698.11	6900502.48	554	0.25	5.1	4.8
Sandstone	SN0023	720598.47	6900504.27	554	0.25	3.8	3.2
Sandstone	SN0024	720501.09	6900503.55	556	0.25	5.7	2.8
Sandstone	SN0025	720400.52	6900498.78	557	0.25	4.1	8.7
Sandstone	SN0026	720300.76	6900504.62	559	0.25	6.5	6.5
Sandstone	SN0027	720199.07	6900502.86	559	0.25	7.3	6.3
Sandstone	SN0028	720098.47	6900503.8	558	0.25	7.3	5.4
Sandstone	SN0029	719998.9	6900503.49	557	0.25	7.3	8.5
Sandstone	SN0030	719899.73	6900491.79	557	0.25	6.9	8
Sandstone	SN0031	719801.26	6900498.19	558	0.25	7.2	6
Sandstone	SN0032	719697.41	6900498.99	554	0.25	6.8	5.6
Sandstone	SN0033	721190.02	6900314.75	549	0.25	6.1	3.3
Sandstone	SN0034	721100.36	6900301.96	550	0.25	4.2	3.3
Sandstone	SN0035	720999.97	6900302.63	548	0.25	5.6	2.6
Sandstone	SN0036	720897.8	6900303.49	551	0.25	4.9	3.3
Sandstone	SN0037	720800.76	6900302.66	552	0.25	5	2.6
Sandstone	SN0038	720700.37	6900302.5	553	0.25	5	3.5
Sandstone	SN0039	720603.51	6900306.48	553	0.25	5.6	2.8

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0040	720500.49	6900301.88	553	0.25	6.1	3.8
Sandstone	SN0041	720403.72	6900303.94	554	0.25	6.4	2
Sandstone	SN0042	720302.63	6900305.4	555	0.25	6.8	2.8
Sandstone	SN0043	720198.72	6900296.3	558	0.25	6.8	2.8
Sandstone	SN0044	720101.81	6900293.83	558	0.25	7.5	2
Sandstone	SN0045	719999.85	6900301.43	557	0.25	6.8	2.2
Sandstone	SN0046	719884.86	6900293.77	558	0.25	7	2.6
Sandstone	SN0047	719797.02	6900296.56	556	0.25	6	4.2
Sandstone	SN0048	719695.16	6900295.37	554	0.25	6.5	4
Sandstone	SN0049	719701.77	6900104.8	558	0.25	6.2	5.1
Sandstone	SN0050	719797.66	6900103.86	558	0.25	8	2.6
Sandstone	SN0051	719897.05	6900102.68	559	0.25	7.9	1.7
Sandstone	SN0052	719996.81	6900101.31	561	0.25	6.8	2.1
Sandstone	SN0053	720099.4	6900103.18	558	0.25	6.5	2.3
Sandstone	SN0054	720196.39	6900101.31	561	0.25	6.4	3.5
Sandstone	SN0055	720299.32	6900104.69	557	0.25	7.7	2.9
Sandstone	SN0056	720397.49	6900101.52	556	0.25	6.9	2.2
Sandstone	SN0057	720499.22	6900103.54	556	0.25	5.6	3.5
Sandstone	SN0058	720600.64	6900099.81	555	0.25	5.5	2.7
Sandstone	SN0059	720700.17	6900103.97	553	0.25	4.9	4.4
Sandstone	SN0060	720798.92	6900100.02	555	0.25	6.1	3.8
Sandstone	SN0061	720899.22	6900100.99	553	0.25	4.5	2.2
Sandstone	SN0062	721000.41	6900103.45	554	0.25	5.9	2.1
Sandstone	SN0063	721100.18	6900102.33	553	0.25	8.3	5
Sandstone	SN0064	721198.27	6900095.04	550	0.25	4.6	2.6
Sandstone	SN0065	719600.18	6899102.76	560	0.25	6.1	5.9
Sandstone	SN0066	719700.14	6899101.79	560	0.25	6.7	2.5
Sandstone	SN0067	719799.77	6899102.63	563	0.25	3.1	6
Sandstone	SN0068	719898.68	6899103.48	562	0.25	3.8	5.9
Sandstone	SN0069	719999.57	6899095.82	569	0.25	4.1	2.5
Sandstone	SN0070	720099.87	6899101.65	572	0.25	8.1	1.1
Sandstone	SN0071	720202.12	6899098.71	567	0.25	5.7	3.5
Sandstone	SN0072	720300.74	6899101.01	562	0.25	3.8	5.9
Sandstone	SN0073	720399.75	6899101.92	554	0.25	6	4.8
Sandstone	SN0074	720499.36	6899101.64	552	0.25	6	8
Sandstone	SN0075	720600.81	6899102.86	550	0.25	7.2	1.5
Sandstone	SN0076	720699.17	6899101.97	546	0.25	5.9	1.3
Sandstone	SN0077	720799.69	6899103.51	546	0.25	6.3	0.9
Sandstone	SN0078	720900.13	6899099.74	544	0.25	6.2	0.8
Sandstone	SN0079	721001.93	6899098.41	545	0.25	5.5	2

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0080	721099.87	6899102.86	543	0.25	6	3.1
Sandstone	SN0081	721197.8	6899101.82	543	0.25	7.5	1.8
Sandstone	SN0082	721203.76	6899303.51	546	0.25	4.7	4.9
Sandstone	SN0084	721099.78	6899302.74	548	0.25	6.1	5.1
Sandstone	SN0085	721001.26	6899298.64	549	0.25	5.2	3.4
Sandstone	SN0086	720900.25	6899298.87	548	0.25	6.6	2
Sandstone	SN0087	720800.51	6899302.16	546	0.25	10.4	7.5
Sandstone	SN0088	720701.12	6899302.67	545	0.25	5.2	3.3
Sandstone	SN0089	720597.95	6899302.11	546	0.25	2.9	3.6
Sandstone	SN0090	720499.27	6899300.68	550	0.25	3.8	1.5
Sandstone	SN0091	720394.78	6899298.69	560	0.25	1.4	3.5
Sandstone	SN0092	720302.66	6899303.01	555	0.25	5.6	3.3
Sandstone	SN0093	720200.61	6899302.17	554	0.25	3.5	56.5
Sandstone	SN0094	720104.9	6899303.69	555	0.25	4.5	4.4
Sandstone	SN0095	719998.35	6899299.43	559	0.25	4.4	7.9
Sandstone	SN0096	719900.3	6899301.74	561	0.25	2.7	3.7
Sandstone	SN0097	719799.31	6899301.62	562	0.25	6.2	4.1
Sandstone	SN0098	719703.19	6899301.97	561	0.25	5.1	2.9
Sandstone	SN0099	719598.84	6899301.71	559	0.25	7.2	3.4
Sandstone	SN0100	719600.49	6899500.17	559	0.25	7	3.7
Sandstone	SN0101	719699.26	6899500.17	561	0.25	7.4	3.4
Sandstone	SN0102	719801.95	6899502.63	561	0.25	6.2	4.7
Sandstone	SN0103	719900.72	6899500.17	562	0.25	7	3.7
Sandstone	SN0104	719999.28	6899502.51	559	0.25	6.8	4.1
Sandstone	SN0105	720100.54	6899501.34	559	0.25	6.9	2.4
Sandstone	SN0106	720197.92	6899501.99	557	0.25	7.1	2.2
Sandstone	SN0107	720300.33	6899503.44	554	0.25	6.9	2.5
Sandstone	SN0108	720400.21	6899499.85	552	0.25	6.3	3.6
Sandstone	SN0109	720500.27	6899501.32	549	0.25	6.9	4.8
Sandstone	SN0110	720600.9	6899501.9	547	0.25	6.6	4.7
Sandstone	SN0111	720700.07	6899501.62	550	0.25	6.9	2.6
Sandstone	SN0112	720797.51	6899502.18	549	0.25	7.9	2.5
Sandstone	SN0113	720899.14	6899504.14	554	0.25	6.8	3.3
Sandstone	SN0114	720998.82	6899495.46	553	0.25	7.2	2.8
Sandstone	SN0115	721099.16	6899501.67	555	0.25	7.6	4
Sandstone	SN0116	721200.13	6899501.06	555	0.25	7.6	3.8
Sandstone	SN0117	719699.05	6899898.61	559	0.25	8.2	2.8
Sandstone	SN0118	719802.3	6899901.51	559	0.25	5.5	4
Sandstone	SN0119	719896.85	6899901.09	559	0.25	8.2	3.9
Sandstone	SN0120	719998.86	6899899.85	558	0.25	7.9	3.5

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0121	720107.09	6899904	556	0.25	7.3	4.2
Sandstone	SN0122	720199.97	6899904.41	556	0.25	7.9	3.1
Sandstone	SN0123	720299.08	6899901.09	559	0.25	7.8	3.9
Sandstone	SN0124	720401.7	6899902.32	559	0.25	7.6	2.2
Sandstone	SN0125	720499.48	6899901.67	555	0.25	6.8	3
Sandstone	SN0126	720599.85	6899901.89	554	0.25	6.9	1.8
Sandstone	SN0127	720697.85	6899902.75	557	0.25	7.4	2.1
Sandstone	SN0128	720798	6899901.89	556	0.25	7.6	3.2
Sandstone	SN0129	720902.47	6899901.67	558	0.25	8.6	2.6
Sandstone	SN0130	720998.31	6899904.26	557	0.25	8.6	4.8
Sandstone	SN0131	721099.11	6899901.24	556	0.25	8.2	3.4
Sandstone	SN0132	721201.64	6899902.53	557	0.25	7.9	4
Sandstone	SN0133	721202.51	6899696.42	558	0.25	7.9	4.1
Sandstone	SN0134	721096.98	6899705.84	560	0.25	8.1	3.7
Sandstone	SN0135	721000.87	6899698.38	562	0.25	8.2	4.9
Sandstone	SN0136	720896.91	6899702.7	556	0.25	8.2	2.9
Sandstone	SN0137	720803.15	6899700.74	554	0.25	8.1	3.1
Sandstone	SN0138	720701.15	6899706.23	552	0.25	7.1	4.4
Sandstone	SN0139	720600.33	6899696.42	551	0.25	7.5	2.9
Sandstone	SN0140	720495.97	6899701.91	551	0.25	6.6	2.5
Sandstone	SN0141	720403	6899702.31	556	0.25	8.3	2.8
Sandstone	SN0142	720301.78	6899698.77	556	0.25	8.6	4
Sandstone	SN0143	720200.96	6899699.56	552	0.25	8	4.1
Sandstone	SN0144	720097.53	6899700.41	553	0.25	8	2.6
Sandstone	SN0145	720002.3	6899702.14	554	0.25	7.8	2.4
Sandstone	SN0146	719901.33	6899700.45	556	0.25	5.2	2.3
Sandstone	SN0147	719797.26	6899702.48	559	0.25	7.7	2.7
Sandstone	SN0148	719694.16	6899703.58	558	0.25	7.1	4.6
Sandstone	SN0149	719601.9	6899703.43	558	0.25	8.4	2.4
Sandstone	SN0150	724246.75	6893183.06	511	0.25	9.6	28.5
Sandstone	SN0151	724196.64	6893182.38	513	0.25	9.5	19.6
Sandstone	SN0152	724145.67	6893181.06	514	0.25	8.2	15.6
Sandstone	SN0153	724093.56	6893184.01	512	0.25	8.9	9.7
Sandstone	SN0154	724046.85	6893180.6	512	0.25	9.6	6.7
Sandstone	SN0155	723997.52	6893182.68	512	0.25	9.1	10.6
Sandstone	SN0156	723946.27	6893180.88	516	0.25	12.3	9.4
Sandstone	SN0157	723896.42	6893180.34	516	0.25	9.1	7.3
Sandstone	SN0158	723845.96	6893182.16	514	0.25	8.1	8.8
Sandstone	SN0159	723796.04	6893182.9	513	0.25	8.5	10.4
Sandstone	SN0160	723790.97	6893084.55	520	0.25	8.7	9.8

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0161	723841.95	6893081.54	518	0.25	9	18.4
Sandstone	SN0162	723895.93	6893080.68	518	0.25	9	18.7
Sandstone	SN0163	723947.08	6893079.31	517	0.25	10.6	11.5
Sandstone	SN0164	723995.46	6893079.84	514	0.25	10.3	25.7
Sandstone	SN0165	724045.3	6893080.21	514	0.25	9.6	32.5
Sandstone	SN0166	724095.93	6893082.61	514	0.25	9.5	40.4
Sandstone	SN0167	724146.31	6893081.99	514	0.25	12.2	54.5
Sandstone	SN0168	724194.53	6893082	512	0.25	11	39.3
Sandstone	SN0169	724246.96	6893080.04	512	0.25	11.2	14.7
Sandstone	SN0170	724243.93	6892980.82	513	0.25	15	54.8
Sandstone	SN0171	724192.72	6892981.53	516	0.25	13.5	35.5
Sandstone	SN0172	724143.37	6892976.14	518	0.25	11.7	68.4
Sandstone	SN0173	724095.43	6892981.2	515	0.25	17.2	99.6
Sandstone	SN0174	724046.86	6892982.3	514	0.25	28.2	59.5
Sandstone	SN0175	723992.87	6892984.45	516	0.25	9.6	26
Sandstone	SN0176	723948.25	6892982.13	517	0.25	9.1	27
Sandstone	SN0177	723898.19	6892981.46	518	0.25	7.2	20.7
Sandstone	SN0178	723846.98	6892982.5	519	0.25	7.3	28.6
Sandstone	SN0179	723795.68	6892979.74	520	0.25	8.7	13.6
Sandstone	SN0180	723794.64	6892882.09	520	0.25	6.7	4
Sandstone	SN0181	723845.97	6892876.42	519	0.25	7.8	2.8
Sandstone	SN0182	723895.8	6892880.26	518	0.25	6.6	2
Sandstone	SN0183	723944.83	6892881.5	518	0.25	7.7	3
Sandstone	SN0184	723998.38	6892880.57	517	0.25	10.3	37.9
Sandstone	SN0185	724045.07	6892881.81	519	0.25	11.7	81.6
Sandstone	SN0186	724094.26	6892880.46	520	0.25	11	65.7
Sandstone	SN0187	724142.09	6892882.1	520	0.25	8.7	43.2
Sandstone	SN0188	724194.46	6892879.5	519	0.25	9.5	20.8
Sandstone	SN0189	724238.3	6892882.03	519	0.25	8.9	25.2
Sandstone	SN0190	724234.26	6892779.59	521	0.25	7.3	24.2
Sandstone	SN0191	724194.35	6892779.46	520	0.25	12.3	7.2
Sandstone	SN0192	724148.63	6892781.95	520	0.25	8.4	4.7
Sandstone	SN0193	724097.99	6892780.85	520	0.25	8.2	3.4
Sandstone	SN0194	724044.35	6892782.37	519	0.25	7.6	5
Sandstone	SN0195	723995.64	6892781.35	519	0.25	7.6	4.1
Sandstone	SN0196	723949.13	6892782.66	517	0.25	7.5	3.8
Sandstone	SN0197	723896.38	6892781.33	518	0.25	7.5	6.4
Sandstone	SN0198	723847.82	6892780.77	520	0.25	6.5	2.2
Sandstone	SN0199	723797.08	6892782.75	521	0.25	5.7	4.9
Sandstone	SN0200	723795.72	6892681.52	525	0.25	4.9	18.2

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0201	723844.53	6892680.82	522	0.25	5.1	16.3
Sandstone	SN0202	723894.6	6892679.91	521	0.25	6.9	3.6
Sandstone	SN0203	723944.83	6892680.17	520	0.25	6.4	4
Sandstone	SN0204	723995.9	6892680.82	518	0.25	7	3.7
Sandstone	SN0205	724045.28	6892681.14	517	0.25	7.5	3.8
Sandstone	SN0206	724097.54	6892684.29	520	0.25	8.8	4.2
Sandstone	SN0207	724146.48	6892680.34	521	0.25	8.8	2.5
Sandstone	SN0208	724194.46	6892681.2	520	0.25	8.7	5.5
Sandstone	SN0209	719501.9509	6898902.438	559	0.25	7.6	5.4
Sandstone	SN0210	719401.691	6898899.873	555	0.25	7.1	5.1
Sandstone	SN0211	719300.615	6898904.805	555	0.25	8.3	2.8
Sandstone	SN0212	719200.9039	6898902.334	553	0.25	9	4.8
Sandstone	SN0213	719101.7702	6898903.609	552	0.25	9.2	10.5
Sandstone	SN0214	719003.2762	6898899.609	554	0.25	5.8	9
Sandstone	SN0215	718902.2431	6898903.002	552	0.25	3.6	16.7
Sandstone	SN0216	718802.2539	6898900.696	551	0.25	6.2	5.3
Sandstone	SN0217	718697.634	6898897.517	550	0.25	6.3	6.9
Sandstone	SN0218	718604.7829	6898897.698	550	0.25	5.7	1.8
Sandstone	SN0219	718501.0856	6898898.552	545	0.25	4.4	3.9
Sandstone	SN0220	718402.1222	6898904.672	544	0.25	4.8	6.1
Sandstone	SN0221	718303.0653	6898902.709	544	0.25	5.8	3.9
Sandstone	SN0222	718202.7092	6898901.661	543	0.25	4.6	10.5
Sandstone	SN0223	718100.8824	6898903.31	546	0.25	4.1	3.1
Sandstone	SN0224	718002.6382	6898903.943	547	0.25	2.8	3
Sandstone	SN0225	717996.2718	6898703.66	544	0.25	6.3	0.7
Sandstone	SN0226	718097.6854	6898700.982	542	0.25	7.1	3.8
Sandstone	SN0227	718221.745	6898687.075	541	0.25	5.8	6
Sandstone	SN0228	718304.0643	6898702.662	544	0.25	4.9	4.5
Sandstone	SN0229	718399.6288	6898698.503	546	0.25	2.6	3.8
Sandstone	SN0230	718498.8495	6898705.15	548	0.25	8.2	3.3
Sandstone	SN0231	718601.8293	6898693.838	548	0.25	5	4.7
Sandstone	SN0232	718698.5708	6898698.378	552	0.25	3.2	5.6
Sandstone	SN0233	718800.4824	6898700.984	554	0.25	4	11.9
Sandstone	SN0234	718899.8666	6898700.38	557	0.25	5.6	6.4
Sandstone	SN0235	718999.908	6898700.069	558	0.25	7.3	4
Sandstone	SN0236	719096.6833	6898698.254	557	0.25	6.1	8.8
Sandstone	SN0237	719199.8084	6898702.71	557	0.25	7.5	5.3
Sandstone	SN0238	719302.2208	6898696.868	557	0.25	6.4	3.6
Sandstone	SN0239	719397.492	6898699.738	558	0.25	6.4	3.5
Sandstone	SN0240	719499.5126	6898701.942	557	0.25	6.6	5.6

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0241	719495.9925	6898497.964	555	0.25	5.7	3.2
Sandstone	SN0242	719402.3508	6898502.605	560	0.25	9.5	5.7
Sandstone	SN0243	719300.2471	6898503.301	560	0.25	9.4	5.7
Sandstone	SN0244	719202.0627	6898500	559	0.25	8.7	5.9
Sandstone	SN0245	719102.422	6898499.938	561	0.25	9	8.6
Sandstone	SN0246	718998.1658	6898500.099	559	0.25	10.2	9.3
Sandstone	SN0247	718903.2599	6898500.096	560	0.25	7.6	4.3
Sandstone	SN0248	718800.8017	6898497.794	557	0.25	6.1	3.5
Sandstone	SN0249	718698.3256	6898507.606	554	0.25	6.1	5.3
Sandstone	SN0250	718600.7971	6898503.634	550	0.25	5.7	5.6
Sandstone	SN0251	718500.0973	6898499.696	549	0.25	6	4.5
Sandstone	SN0252	718403.5534	6898503.169	548	0.25	7.3	1.6
Sandstone	SN0253	718301.6404	6898499.606	546	0.25	7	0.25
Sandstone	SN0254	718203.3259	6898500.795	546	0.25	7.2	0.25
Sandstone	SN0255	718099.0499	6898504.551	543	0.25	4.8	5
Sandstone	SN0256	717993.0801	6898503.841	541	0.25	6.1	6.2
Sandstone	SN0257	718001.7066	6898300.867	540	0.25	5	2.1
Sandstone	SN0258	718095.6441	6898301.366	544	0.25	3	5.6
Sandstone	SN0259	718198.7065	6898302.3	544	0.25	6.4	2.4
Sandstone	SN0260	718299.2681	6898298.064	545	0.25	4.9	1.4
Sandstone	SN0261	718400.9708	6898304.164	548	0.25	6	8.6
Sandstone	SN0262	718499.1526	6898300.854	549	0.25	6.6	4.4
Sandstone	SN0263	718598.7929	6898301.055	549	0.25	5.6	5.6
Sandstone	SN0264	718700.8737	6898301.373	555	0.25	5.8	4.5
Sandstone	SN0265	718802.61	6898297.798	555	0.25	5.6	8.2
Sandstone	SN0266	718900.2677	6898300.235	554	0.25	3.6	3.9
Sandstone	SN0267	718992.945	6898288.01	552	0.25	6.2	0.6
Sandstone	SN0268	719102.9243	6898300.292	554	0.25	6.8	4.8
Sandstone	SN0269	719201.9684	6898296.661	557	0.25	6.5	1.9
Sandstone	SN0270	719299.9968	6898301.966	557	0.25	4.6	15.6
Sandstone	SN0271	719402.1997	6898300.733	551	0.25	7.1	6.4
Sandstone	SN0272	719500.7261	6898299.696	549	0.25	7.3	8.7
Sandstone	SN0273	721200.529	6898902.777	543	0.25	4	16.6
Sandstone	SN0274	721000.4473	6898902.703	543	0.25	5.3	5.3
Sandstone	SN0275	720901.7442	6898902.561	545	0.25	6.2	3.9
Sandstone	SN0276	720800.9058	6898902.497	546	0.25	7.4	2.5
Sandstone	SN0277	720700.2291	6898902.936	547	0.25	7	2.2
Sandstone	SN0278	720602.8053	6898900.479	547	0.25	7.3	3.2
Sandstone	SN0279	720502.8435	6898903.776	551	0.25	7.2	2.2
Sandstone	SN0280	720401.4718	6898901.097	554	0.25	4.6	8.8

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0281	720300.8299	6898902.567	554	0.25	2.9	16.3
Sandstone	SN0282	720203.4784	6898907.666	557	0.25	1.6	6.1
Sandstone	SN0283	720101.744	6898902.681	565	0.25	2.9	8.1
Sandstone	SN0284	720001.5742	6898901.733	563	0.25	4.6	3.8
Sandstone	SN0285	719900.0373	6898904.444	566	0.25	4.3	5.6
Sandstone	SN0286	719799.5989	6898902.631	567	0.25	5.9	0.25
Sandstone	SN0287	719702.4885	6898901.419	564	0.25	6.4	3.1
Sandstone	SN0288	719601.0782	6898903.585	561	0.25	6.6	3.1
Sandstone	SN0289	719592.9483	6898698.374	556	0.25	4.1	2.7
Sandstone	SN0290	719698.3051	6898698.839	558	0.25	4.4	3.4
Sandstone	SN0291	719799.0788	6898704.677	555	0.25	3	4.1
Sandstone	SN0292	719904.0498	6898700.285	555	0.25	3.1	18.6
Sandstone	SN0293	720001.9742	6898698.345	556	0.25	4	2.9
Sandstone	SN0294	720098.4621	6898696.005	555	0.25	3.9	2
Sandstone	SN0295	720195.83	6898699.657	553	0.25	4.2	5.6
Sandstone	SN0296	720297.6131	6898700.413	551	0.25	6.8	2.8
Sandstone	SN0297	720398.4108	6898699.45	548	0.25	5.1	6.8
Sandstone	SN0298	720500.2636	6898692.2	548	0.25	2.9	6.3
Sandstone	SN0299	720600.8124	6898701.484	547	0.25	5.6	3.2
Sandstone	SN0300	720823.8853	6898688.978	543	0.25	3.9	7.6
Sandstone	SN0301	720905.0624	6898696.264	542	0.25	9.3	5.1
Sandstone	SN0302	720993.981	6898698.932	542	0.25	7	3.3
Sandstone	SN0303	721099.138	6898693.807	541	0.25	5.6	7.8
Sandstone	SN0304	721214.3035	6898738.735	541	0.25	4.8	4.7
Sandstone	SN0305	719601.3548	6898503.709	552	0.25	3.9	2
Sandstone	SN0306	719701.8829	6898498.048	550	0.25	4.3	5.8
Sandstone	SN0307	719801.6858	6898508.49	556	0.25	2.7	7.4
Sandstone	SN0308	719896.6752	6898501.255	558	0.25	3.6	3.3
Sandstone	SN0309	719997.5665	6898501.118	561	0.25	5.4	0.9
Sandstone	SN0310	720095.8708	6898497.266	555	0.25	5.3	4.7
Sandstone	SN0311	720189.8252	6898502.509	553	0.25	5.6	7.2
Sandstone	SN0312	720297.295	6898490.257	549	0.25	5.5	7.5
Sandstone	SN0313	720403.4756	6898500.964	549	0.25	2.4	8.7
Sandstone	SN0314	720499.2394	6898501.432	549	0.25	4.1	3.4
Sandstone	SN0315	720597.2857	6898498.934	547	0.25	6.4	2.7
Sandstone	SN0316	720697.9722	6898504.171	545	0.25	3.6	5.1
Sandstone	SN0317	720798.8818	6898499.421	544	0.25	6.4	3.2
Sandstone	SN0318	720926.2839	6898483.704	543	0.25	6.7	3
Sandstone	SN0319	720997.7624	6898502.437	543	0.25	7	2.1
Sandstone	SN0320	721100.8753	6898500.793	543	0.25	6.9	1.9

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0321	721200.606	6898498.463	540	0.25	5	1.3
Sandstone	SN0322	721200.4017	6898303.503	554	0.25	4	5.7
Sandstone	SN0323	721100.9572	6898302.836	548	0.25	4	3.6
Sandstone	SN0324	721000.5617	6898301.647	546	0.25	5.2	4.8
Sandstone	SN0325	720900.0466	6898298.715	545	0.25	6.5	3.5
Sandstone	SN0326	720801.742	6898300.965	546	0.25	6.6	2.2
Sandstone	SN0327	720706.0714	6898298.302	545	0.25	6.1	4.5
Sandstone	SN0328	720599.6268	6898291.176	548	0.25	5.8	4.5
Sandstone	SN0329	720501.3752	6898302.147	549	0.25	5.8	4.3
Sandstone	SN0330	720400.9737	6898304.396	552	0.25	4.3	5.6
Sandstone	SN0331	720303.765	6898303.933	553	0.25	3.3	2.6
Sandstone	SN0332	720201.6428	6898301.401	552	0.25	3.5	6.1
Sandstone	SN0333	720102.1601	6898300.264	557	0.25	3.2	3.8
Sandstone	SN0334	719999.5059	6898306.034	554	0.25	3.1	2.3
Sandstone	SN0335	719900.7635	6898305.907	550	0.25	2.7	0.25
Sandstone	SN0336	719802.0075	6898304.131	549	0.25	3.3	7.1
Sandstone	SN0337	719700.5459	6898303.461	546	0.25	3.5	2.2
Sandstone	SN0338	719595.3765	6898299.104	547	0.25	4.7	4.4
Sandstone	SN0339	719700.7148	6898110.634	549	0.25	4.1	1.5
Sandstone	SN0340	719602.6181	6898102.229	546	0.25	3.9	0.8
Sandstone	SN0341	719486.0584	6898109.273	545	0.25	6.3	1.5
Sandstone	SN0342	719402.1412	6898106.397	547	0.25	4.7	1.4
Sandstone	SN0343	719302.53	6898098.931	546	0.25	6.6	1.5
Sandstone	SN0344	719184.4564	6898101.525	549	0.25	7.5	2.5
Sandstone	SN0345	719102.0031	6898103.893	548	0.25	4.2	2.5
Sandstone	SN0346	718999.4625	6898101.478	552	0.25	2.2	0.25
Sandstone	SN0347	718903.5151	6898100.509	561	0.25	3.4	15.5
Sandstone	SN0348	718795.9402	6898106.024	552	0.25	3.2	4.5
Sandstone	SN0349	718704.8185	6898102.512	550	0.25	4.8	2.7
Sandstone	SN0350	718600.1159	6898102.718	549	0.25	4.5	4.6
Sandstone	SN0351	718498.0258	6898104.507	546	0.25	7	3.1
Sandstone	SN0352	718401.0091	6898104.888	546	0.25	6.9	0.8
Sandstone	SN0353	718296.8865	6898100.583	548	0.25	9.3	15.9
Sandstone	SN0354	718204.0377	6898100.901	546	0.25	6.7	4.2
Sandstone	SN0355	718098.9761	6898095.92	543	0.25	6.3	3.2
Sandstone	SN0356	718004.5931	6898098.21	541	0.25	7.3	2.3
Sandstone	SN0357	717998.8865	6897885.77	540	0.25	5.8	3.1
Sandstone	SN0358	718103.8808	6897900.22	545	0.25	6.4	6.2
Sandstone	SN0359	718194.426	6897900.252	548	0.25	7.4	16.6
Sandstone	SN0360	718294.6503	6897899.298	550	0.25	13.4	5.7

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0361	718398.0059	6897896.089	546	0.25	6.7	5.8
Sandstone	SN0362	718496.5638	6897901.111	544	0.25	7.6	1.8
Sandstone	SN0363	718593.8965	6897903.354	544	0.25	3.9	4.7
Sandstone	SN0364	718700.0857	6897904.388	547	0.25	3	5.6
Sandstone	SN0365	718795.5777	6897900.582	547	0.25	3.3	7.1
Sandstone	SN0366	718900.7415	6897897.385	551	0.25	4	6.1
Sandstone	SN0367	718999.8091	6897899.72	550	0.25	3.3	5.2
Sandstone	SN0368	719098.6357	6897902.61	546	0.25	4.8	7.6
Sandstone	SN0369	719203.3792	6897902.713	545	0.25	6.7	4.1
Sandstone	SN0370	719296.3308	6897900.764	543	0.25	5.7	4.7
Sandstone	SN0371	719402.7323	6897909.54	543	0.25	5.5	4.3
Sandstone	SN0372	719495.3133	6897899.303	544	0.25	7.4	3.7
Sandstone	SN0373	719400.5486	6897505.323	544	0.25	3.1	3.2
Sandstone	SN0374	719301.1053	6897503.822	543	0.25	5.2	3.4
Sandstone	SN0375	719199.4848	6897498.862	541	0.25	4.7	5.8
Sandstone	SN0376	719099.1743	6897521.534	541	0.25	5.5	5.4
Sandstone	SN0377	719000.7394	6897503.878	540	0.25	4.7	9.4
Sandstone	SN0378	718901.4816	6897500.82	538	0.25	7.1	0.25
Sandstone	SN0379	718699.319	6897500.499	540	0.25	6.6	1.4
Sandstone	SN0380	718601.6544	6897504.351	541	0.25	6.5	0.5
Sandstone	SN0381	718517.2875	6897500.792	540	0.25	5.5	3.9
Sandstone	SN0382	718401.2739	6897501.383	540	0.25	4.8	2.9
Sandstone	SN0383	718303.3694	6897499.192	542	0.25	2.7	0.9
Sandstone	SN0384	718200.5363	6897504.305	541	0.25	2.3	3.6
Sandstone	SN0385	718102.6554	6897502.989	536	0.25	5	0.8
Sandstone	SN0386	717997.5933	6897502.022	537	0.25	7.5	3.3
Sandstone	SN0387	717996.7283	6897304.108	536	0.25	6	1.9
Sandstone	SN0388	718199.0298	6897299.12	536	0.25	5.4	2.4
Sandstone	SN0389	718300.2666	6897302.373	537	0.25	5.9	1.6
Sandstone	SN0390	718400.9112	6897297.43	536	0.25	4.7	6.7
Sandstone	SN0391	718497.0223	6897304.069	536	0.25	5.8	8.2
Sandstone	SN0392	718587.9462	6897330.428	536	0.25	6.5	1.8
Sandstone	SN0393	718697.812	6897298.67	536	0.25	6	0.8
Sandstone	SN0394	718797.4084	6897302.981	536	0.25	6.8	6.8
Sandstone	SN0395	719000.1833	6897302.124	539	0.25	4.2	4.2
Sandstone	SN0396	719100.9848	6897301.257	540	0.25	5.3	3.8
Sandstone	SN0397	719199.5715	6897309.862	540	0.25	4.8	4.4
Sandstone	SN0398	719300.0839	6897300.029	541	0.25	5	3.4
Sandstone	SN0399	719402.3836	6897300.426	542	0.25	4.6	5
Sandstone	SN0400	719400.958	6897703.159	543	0.25	3.7	2.2

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0401	719276.1632	6897714.639	541	0.25	5	0.25
Sandstone	SN0402	719199.6886	6897699.291	542	0.25	5.5	6.2
Sandstone	SN0403	719104.1348	6897699.736	541	0.25	4.8	3.5
Sandstone	SN0404	719004.5826	6897700.949	542	0.25	6	3.8
Sandstone	SN0405	718902.6886	6897698.448	543	0.25	5.6	3.5
Sandstone	SN0406	718800.5001	6897703.818	540	0.25	4.7	5.8
Sandstone	SN0407	718680.2434	6897702.474	541	0.25	4.4	5.7
Sandstone	SN0408	718603.2964	6897700.834	539	0.25	6.3	2
Sandstone	SN0409	718494.4547	6897709.395	540	0.25	6.1	2.7
Sandstone	SN0410	718404.963	6897724.897	542	0.25	6.3	8.2
Sandstone	SN0411	718303.0767	6897700.362	543	0.25	5.3	13.4
Sandstone	SN0412	718200.5237	6897698.073	541	0.25	7.2	1.7
Sandstone	SN0413	718110.6821	6897696.588	540	0.25	4.4	9.5
Sandstone	SN0414	718004.9714	6897703.453	538	0.25	6.6	0.7
Sandstone	SN0415	717995.7689	6897104.201	536	0.25	5.5	1.7
Sandstone	SN0416	718098.6844	6897102.389	535	0.25	6.4	5.7
Sandstone	SN0417	718199.9773	6897101.841	532	0.25	6.2	2.6
Sandstone	SN0418	718313.9995	6897114.837	531	0.25	4.7	1.4
Sandstone	SN0419	718397.6364	6897099.69	536	0.25	3.4	5.4
Sandstone	SN0420	718696.8804	6897102.425	535	0.25	4.3	1.1
Sandstone	SN0421	718796.8189	6897102.775	538	0.25	3.5	2.7
Sandstone	SN0422	718905.4343	6897098.302	540	0.25	4.9	4.7
Sandstone	SN0423	718996.6123	6897099.65	540	0.25	5.3	0.7
Sandstone	SN0424	719101.2101	6897103.58	539	0.25	4.7	2.7
Sandstone	SN0425	719203.9582	6897101.103	537	0.25	4.6	1.3
Sandstone	SN0426	719298.0888	6897101.075	540	0.25	4.9	0.9
Sandstone	SN0427	719403.1846	6897102.21	550	0.25	4.2	1.8
Sandstone	SN0428	719500.4672	6897102.526	555	0.25	1.9	1.8
Sandstone	SN0429	719603.0216	6897096.847	548	0.25	2.3	8.1
Sandstone	SN0430	719696.5695	6897100.751	544	0.25	4.7	4.2
Sandstone	SN0431	719690.8922	6897303.235	547	0.25	4.4	4.5
Sandstone	SN0432	719600.7854	6897302.97	549	0.25	5.3	8.5
Sandstone	SN0433	719518.3391	6897293.615	547	0.25	7.5	5.7
Sandstone	SN0434	719494.4556	6897500.154	549	0.25	2.8	2.1
Sandstone	SN0435	719594.1058	6897501.871	551	0.25	4	2
Sandstone	SN0436	719695.7347	6897496.856	550	0.25	2.5	7.9
Sandstone	SN0437	719700.3281	6897702.428	558	0.25	5.4	0.25
Sandstone	SN0438	719607.9776	6897701.135	549	0.25	3.5	2.9
Sandstone	SN0439	719503.945	6897704.164	544	0.25	6.1	3.5
Sandstone	SN0440	719602.4048	6897899.862	548	0.25	5	3.8

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0441	719701.6768	6897896.784	554	0.25	3.9	1.7
Sandstone	SN0442	718802.2676	6896902.059	538	0.25	6.2	4.8
Sandstone	SN0443	718695.3548	6896900.75	537	0.25	4.7	0.25
Sandstone	SN0444	718610.3797	6896903.07	533	0.25	6.1	0.25
Sandstone	SN0445	718485.5882	6896908.748	532	0.25	4.6	4.4
Sandstone	SN0446	718408.9122	6896901.893	531	0.25	3.4	5.3
Sandstone	SN0447	718282.9225	6896910.503	534	0.25	6	2.3
Sandstone	SN0448	718202.3444	6896900.906	535	0.25	6.7	1.9
Sandstone	SN0449	718104.3609	6896896.548	535	0.25	6.3	2.9
Sandstone	SN0450	718004.3573	6896904.265	538	0.25	6.4	1.9
Sandstone	SN0451	717909.0356	6896702.406	537	0.25	5.7	0.25
Sandstone	SN0452	718000.9835	6896700.875	536	0.25	5.6	2.7
Sandstone	SN0453	718098.0153	6896696.283	536	0.25	6.6	0.6
Sandstone	SN0454	718198.9454	6896700.379	535	0.25	7.2	1.3
Sandstone	SN0455	718299.02	6896700.467	533	0.25	5.9	3.6
Sandstone	SN0456	718542.4199	6896702.891	531	0.25	5.5	4.8
Sandstone	SN0457	718600.8376	6896703.339	532	0.25	5.1	2.9
Sandstone	SN0458	718729.8173	6896699.203	534	0.25	5.3	2
Sandstone	SN0459	718799.5148	6896700.839	534	0.25	5.5	4.9
Sandstone	SN0460	718902.1484	6896702.945	536	0.25	5	7.9
Sandstone	SN0461	718999.4629	6896698.984	535	0.25	4.6	4.8
Sandstone	SN0462	719094.5609	6896699.469	538	0.25	4.2	4.8
Sandstone	SN0463	719200.5495	6896700.504	543	0.25	3.7	3.6
Sandstone	SN0464	719300.9862	6896701.14	537	0.25	4.1	7.9
Sandstone	SN0465	719407.0603	6896696.429	540	0.25	4.4	3.3
Sandstone	SN0466	719502.7787	6896700.839	538	0.25	4.6	7
Sandstone	SN0467	719500.2629	6896901.972	540	0.25	4.9	3.4
Sandstone	SN0468	719396.8755	6896902.505	540	0.25	3.2	3.7
Sandstone	SN0469	719300.9655	6896900.652	542	0.25	3.3	4
Sandstone	SN0470	719201.5372	6896900.112	540	0.25	3.9	2.8
Sandstone	SN0471	719105.2918	6896902.124	538	0.25	4.6	3.4
Sandstone	SN0472	718964.2132	6896922.841	537	0.25	4.5	4.2
Sandstone	SN0473	718901.9544	6896899.323	535	0.25	2.9	4.3
Sandstone	SN0474	719805.3654	6897098.859	542	0.25	5.2	6.7
Sandstone	SN0475	719906.3007	6897104.698	546	0.25	1.2	0.25
Sandstone	SN0476	719997.164	6897100.819	546	0.25	4.2	2.3
Sandstone	SN0477	720100.6817	6897099.283	546	0.25	6.4	1.8
Sandstone	SN0478	720217.6364	6897093.51	547	0.25	4.2	7.8
Sandstone	SN0479	720300.6693	6897101.939	546	0.25	2.9	6.1
Sandstone	SN0480	720402.7035	6897097.551	543	0.25	4.3	3.3

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0481	720501.535	6897098.813	544	0.25	6.2	1.5
Sandstone	SN0482	720600.576	6897100.069	540	0.25	5.7	3.2
Sandstone	SN0483	720698.0638	6897101.081	538	0.25	5.9	3.2
Sandstone	SN0484	720803.4337	6897114.175	538	0.25	5.3	3.1
Sandstone	SN0485	720901.3053	6897100.314	538	0.25	6.3	3.1
Sandstone	SN0486	720997.741	6897100.627	540	0.25	3.9	24.5
Sandstone	SN0487	721099.5463	6897100.959	539	0.25	5.4	10.2
Sandstone	SN0488	721097.9351	6897305.786	540	0.25	5.4	5.6
Sandstone	SN0489	721000.7854	6897301.339	542	0.25	3.8	5.3
Sandstone	SN0490	720897.9135	6897306.113	540	0.25	4.7	2.4
Sandstone	SN0491	720800.1219	6897302.238	539	0.25	6.3	6.4
Sandstone	SN0492	720703.8012	6897291.495	539	0.25	6.8	20.2
Sandstone	SN0493	720601.9767	6897302.946	542	0.25	5.5	5.5
Sandstone	SN0494	720462.0664	6897299.685	542	0.25	6.5	9.3
Sandstone	SN0495	720396.0951	6897305.668	543	0.25	6.2	6.7
Sandstone	SN0496	720303.3618	6897301.66	545	0.25	3.8	4.7
Sandstone	SN0497	720199.8469	6897300.762	547	0.25	5.5	13.6
Sandstone	SN0498	720091.5159	6897299.987	548	0.25	6.3	0.7
Sandstone	SN0499	719999.129	6897300.804	549	0.25	3.2	4
Sandstone	SN0500	719898.9615	6897303.785	551	0.25	2.6	3.4
Sandstone	SN0501	719802.809	6897297.873	547	0.25	3.2	3.1
Sandstone	SN0502	719801.7085	6898100.593	550	0.25	5.4	2.9
Sandstone	SN0503	719891.6886	6898095.321	556	0.25	4.2	4
Sandstone	SN0504	720004.3504	6898103.441	566	0.25	2.5	6.4
Sandstone	SN0505	720093.9903	6898104.178	558	0.25	2.2	2.6
Sandstone	SN0506	720239.1016	6898094.413	553	0.25	3.8	6.1
Sandstone	SN0507	720301.8257	6898101.554	554	0.25	5.2	2
Sandstone	SN0508	720397.7483	6898098.536	551	0.25	5.1	2.9
Sandstone	SN0509	720496.599	6898099.762	550	0.25	5.8	1.4
Sandstone	SN0510	720595.3637	6898099.095	547	0.25	7.3	1
Sandstone	SN0511	720698.6249	6898100.161	547	0.25	6.7	1.7
Sandstone	SN0512	720796.8227	6898100.068	547	0.25	5.4	0.7
Sandstone	SN0513	720895.8916	6898098.804	548	0.25	2.5	4.7
Sandstone	SN0514	721001.5155	6898095.612	548	0.25	5.4	3.6
Sandstone	SN0515	721106.1335	6898106.423	545	0.25	2	2.3
Sandstone	SN0516	721196.0316	6898107.046	543	0.25	2.5	1.3
Sandstone	SN0517	721100.7945	6897903.272	542	0.25	2.8	4.4
Sandstone	SN0518	721003.4275	6897904.758	543	0.25	3.9	4.8
Sandstone	SN0519	720895.0538	6897898.638	546	0.25	3.7	8.5
Sandstone	SN0520	720802.0723	6897904.773	547	0.25	6.5	1.7

Project	Sample #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Depth (m)	As (ppm)	Au (ppb)
Sandstone	SN0521	720699.56	6897901.931	547	0.25	5.6	4.6
Sandstone	SN0522	720602.2184	6897899.643	549	0.25	5.6	8.7
Sandstone	SN0523	720504.1916	6897902.708	548	0.25	4.5	2.5
Sandstone	SN0524	720367.8737	6897902.134	548	0.25	8.4	2.2
Sandstone	SN0525	720276.4999	6897925.968	549	0.25	4.6	2.7
Sandstone	SN0526	720202.6523	6897904.571	549	0.25	3.1	4
Sandstone	SN0527	720112.8859	6897896.04	552	0.25	2.8	4.1
Sandstone	SN0528	720000.6	6897902.3	557	0.25	2.6	6.4
Sandstone	SN0529	719896.4027	6897904.122	568	0.25	3.8	5.6
Sandstone	SN0530	719800.3886	6897900.314	563	0.25	3.6	2
Sandstone	SN0531	719798.4837	6897697.215	551	0.25	4.9	4.6
Sandstone	SN0532	719897.1802	6897697.498	547	0.25	5.5	0.6
Sandstone	SN0533	719988.7921	6897701.53	548	0.25	4.3	1.6
Sandstone	SN0534	720097.545	6897702.047	547	0.25	5.3	4.4
Sandstone	SN0535	720198.3478	6897702.857	545	0.25	4.2	4.6
Sandstone	SN0536	720305.5267	6897703.008	544	0.25	5	7.4
Sandstone	SN0537	720400.1412	6897713.037	547	0.25	4.3	3.5
Sandstone	SN0538	720495.6368	6897697.771	549	0.25	3.8	3.3
Sandstone	SN0539	720597.5636	6897700.01	549	0.25	4.7	3.2
Sandstone	SN0540	720701.7371	6897697.127	546	0.25	4.3	1.7
Sandstone	SN0541	720813.3405	6897713.471	544	0.25	4	3.5
Sandstone	SN0542	720897.8775	6897702.555	542	0.25	6.8	2.1
Sandstone	SN0543	720998.634	6897703.627	545	0.25	5.6	5.5
Sandstone	SN0544	721098.7898	6897700.891	547	0.25	2.8	5.3
Sandstone	SN0545	721092.3713	6897506.512	545	0.25	3.5	3.4
Sandstone	SN0546	721003.3539	6897515.637	542	0.25	5.7	6.3
Sandstone	SN0547	720902.8526	6897501.67	541	0.25	6.1	0.7
Sandstone	SN0548	720803.2742	6897496.986	542	0.25	6.6	3.3
Sandstone	SN0549	720698.4915	6897496.969	543	0.25	7	3.2
Sandstone	SN0550	720608.4084	6897501.389	544	0.25	5.5	6
Sandstone	SN0551	720499.0703	6897500.318	545	0.25	4.3	6.3
Sandstone	SN0552	720403.045	6897502.237	543	0.25	7.4	5.6
Sandstone	SN0553	720284.4424	6897493.333	544	0.25	10	4.1
Sandstone	SN0554	720198.1887	6897492.918	548	0.25	8.1	5.8
Sandstone	SN0555	720097.0232	6897503.863	546	0.25	4.3	2.5
Sandstone	SN0556	720000.8262	6897502.162	550	0.25	3.9	4.4
Sandstone	SN0557	719905.2534	6897504.771	556	0.25	3.5	4.3
Sandstone	SN0558	719801.6062	6897502.276	552	0.25	3.6	3.8